7,819 research outputs found

    Experimental Bell Inequality Violation with an Atom and a Photon

    Full text link
    We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.Comment: 4 pages, 2 figure

    Polarity-dependent dielectric torque in nematic liquid crystals

    Full text link
    The dielectric dispersion in the uniaxial nematic liquid crystals affects the switching dynamics of the director, as the dielectric torque is determined by not only the present values of the electric field and director but also by their past values. We demonstrate that this dielectric memory leads to an unusual contribution to the dielectric torque that is linear in the present field and thus polarity-sensitive. This torque can be used to accelerate the switch-off phase of director dynamics.Comment: 12 pages, 4 figure

    Efficient fluorescence collection from trapped ions with an integrated spherical mirror

    Full text link
    Efficient collection of fluorescence from trapped ions is crucial for quantum optics and quantum computing applications, specifically, for qubit state detection and in generating single photons for ion-photon and remote ion entanglement. In a typical setup, only a few per cent of ion fluorescence is intercepted by the aperture of the imaging optics. We employ a simple metallic spherical mirror integrated with a linear Paul ion trap to achieve photon collection efficiency of at least 10% from a single Ba+^+ ion. An aspheric corrector is used to reduce the aberrations caused by the mirror and achieve high image quality.Comment: 5 pages and 4 figure

    Logic Modeling and the Ridiculome Under the Rug

    Get PDF
    Logic-derived modeling has been used to map biological networks and to study arbitrary functional interactions, and fine-grained kinetic modeling can accurately predict the detailed behavior of well-characterized molecular systems; at present, however, neither approach comes close to unraveling the full complexity of a cell. The current data revolution offers significant promises and challenges to both approaches - and could bring them together as it has spurred the development of new methods and tools that may help to bridge the many gaps between data, models, and mechanistic understanding. Have you used logic modeling in your research? It would not be surprising if many biologists would answer no to this hypothetical question. And it would not be true. In high school biology we already became familiar with cartoon diagrams that illustrate basic mechanisms of the molecular machinery operating inside cells. These are nothing else but simple logic models. If receptor and ligand are present, then receptor-ligand complexes form; if a receptor-ligand complex exists, then an enzyme gets activated; if the enzyme is active, then a second messenger is being produced; and so on. Such chains of causality are the essence of logic models (Figure 1a). Arbitrary events and mechanisms are abstracted; relationships are simplified and usually involve just two possible conditions and three possible consequences. The presence or absence of one or more molecule, activity, or function, [some icons in the cartoon] will determine whether another one of them will be produced (created, up-regulated, stimulated) [a \u27positive\u27 link] or destroyed (degraded, down-regulated, inhibited) [a \u27negative\u27 link], or be unaffected [there is no link]. The icons and links often do not follow a standardized format, but when we look at such a cartoon diagram, we believe that we \u27understand\u27 how the system works. Because our brain is easily able to process these relationships, these diagrams allow us to answer two fundamental types of questions related to the system: why (are certain things happening)? What if (we make some changes)
    corecore