746 research outputs found

    Vacuum Stability and the MSSM Higgs Mass

    Full text link
    In the Minimal Supersymmetric Standard Model (MSSM), a Higgs boson mass of 125 GeV can be obtained with moderately heavy scalar top superpartners provided they are highly mixed. The source of this mixing, a soft trilinear stop-stop-Higgs coupling, can result in the appearance of charge- and color-breaking minima in the scalar potential of the theory. If such a vacuum exists and is energetically favorable, the Standard Model-like vacuum can decay to it via quantum tunnelling. In this work we investigate the conditions under which such exotic vacua arise, and we compute the tunnelling rates to them. Our results provide new constraints on the scalar top quarks of the MSSM.Comment: 22 pages, 11 figures. References added. Matches published versio

    The Electroweak Phase Transition in the Inert Doublet Model

    Full text link
    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.Comment: 22 pages, 1 figure. Improved comments on gauge invariance. Matches published versio

    Consequences of Fine-Tuning for Fifth Force Searches

    Full text link
    Light bosonic fields mediate long range forces between objects. If these fields have self-interactions, i.e., non-quadratic terms in the potential, the experimental constraints on such forces can be drastically altered due to a screening (chameleon) or enhancement effect. We explore how technically natural values for such self-interaction coupling constants modify the existing constraints. We point out that assuming the existence of these natural interactions leads to new constraints, contrary to the usual expectation that screening leads to gaps in coverage. We discuss how screening can turn fundamentally equivalence principle (EP)-preserving forces into EP-violating ones. This means that when natural screening is present, searches for EP violation can be used to constrain EP-preserving forces. We show how this effect enables the recently discovered stellar triple system \textit{PSR J0337++1715} to place a powerful constraint on EP-preserving fifth forces. Finally, we demonstrate that technically natural cubic self-interactions modify the vacuum structure of the scalar potential, leading to new constraints from spontaneous and induced vacuum decay.Comment: 36 pages, 9 figures -- v3 reflects version published in JHE
    • …
    corecore