8 research outputs found

    Granuloma formation in pulmonary sarcoidosis

    Get PDF
    Sarcoidosis is a granulomatous disorder of unknown cause, affecting multiple organs, but mainly the lungs. The exact order of immunological events remains obscure. Reviewing current literature, combined with careful clinical observations, we propose a model for granuloma formation in pulmonary sarcoidosis. A tight collaboration between macrophages, dendritic cells, and lymphocyte subsets, initiates the first steps toward granuloma formation, orchestrated by cytokines and chemokines. In a substantial part of pulmonary sarcoidosis patients, granuloma formation becomes an on-going process, leading to debilitating disease, and sometimes death. The immunological response, determining granuloma sustainment is not well

    What patients with pulmonary fibrosis and their partners think

    Get PDF
    Pulmonary fibrosis greatly impacts patients and their partners. Unmet needs of patients are increasingly acknowledged; the needs of partners often remain unnoticed. Little is known about the best way to educate patients and partners. We investigated pulmonary fibrosis patients’ and partners’ perspectives and preferences in care, and the differences in these between the Netherlands and Germany. Additionally, we evaluated whether interactive interviewing could be a novel education method in this population. Patients and partners were interviewed during pulmonary fibrosis patient information meetings. In the Netherlands, voting boxes were used and results were projected directly. In Germany, questionnaires were used. In the Netherlands, 278 patients and partners participated; in Germany, 51. Many participants experienced anxiety. Almost all experienced misunderstanding, because people do not know what pulmonary fibrosis is. All expressed a need for information, psychological support and care for partners. Use of the interactive voting system was found to be pleasant (70%) and informative (94%). This study improves the knowledge of care needs of patients with pulmonary fibrosis and their partners. There were no major differences between the Netherlands and Germany. Interactive interviewing could be an attractive method to acquire insights into the needs and preferences of patients and partners, while providing them with information at the same time

    Fibrocytes are increased in lung and peripheral blood of patients with idiopathic pulmonary fibrosis

    Get PDF
    Background: Fibrocytes are implicated in Idiopathic Pulmonary Fibrosis (IPF) pathogenesis and increased proportions in the circulation are associated with poor prognosis. Upon tissue injury, fibrocytes migrate to the affected organ. In IPF patients, circulating fibrocytes are increased especially during exacerbations, however fibrocytes in the lungs have not been examined. Therefore, we sought to evaluate if fibrocytes can be detected in IPF lungs and we compare percentages and phenotypic characteristics of lung fibrocytes with circulating fibrocytes in IPF. Methods: First we optimized flow cytometric detection circulating fibrocytes using a unique combination of intra- and extra-cellular markers to establish a solid gating strategy. Next we analyzed lung fibrocytes in single cell suspensions of explanted IPF and control lungs and compared characteristics and numbers with circulating fibrocytes of IPF. Results: Using a gating strategy for both circulating and lung fibrocytes, which excludes potentially contaminating cell populations (e.g. neutrophils and different leukocyte subsets), we show that patients with IPF have increased proportions of fibrocytes, not only in the circulation, but also in explanted end-stage IPF lungs. These lung fibrocytes have increased surface expression of HLA-DR, increased intracellular collagen-1 expression, and also altered forward and side scatter characteristics compared with their circulating counterparts. Conclusions: These findings demonstrate that lung fibrocytes in IPF patients can be quantified and characterized by flow cytometry. Lung fibrocytes have different characteristics than circulating fibrocytes and represent an intermediate cell population between circulating fibrocytes and lung fibroblast. Therefore, more insight in their phenotype might lead to specific therapeutic targeting in fibrotic lung diseases

    Enhanced Bruton's tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis

    Get PDF
    RATIONALE: Idiopathic Pulmonary Fibrosis (IPF) is thought to be triggered by repeated alveolar epithelial cell injury. Current evidence suggests that aberrant immune activation may contribute. However, the role of B-cell activation remains unclear. We determined the phenotype and activation status of B-cell subsets and evaluated the contribution of activated B-cells to the development of lung fibrosis both in humans and in mice. METHODS: B-cells in blood, mediastinal lymph node, and lung single-cell suspensions of IPF patients and healthy controls (HC) were characterized using 14-color flow cytometry. Mice were exposed to bleomycin to provoke pulmonary fibrosis. RESULTS: More IgA+ memory B-cells and plasmablasts were found in blood (n = 27) and lungs (n = 11) of IPF patients compared to HC (n = 21) and control lungs (n = 9). IPF patients had higher levels of autoreactive IgA in plasma, which correlated with an enhanced decline of forced vital capacity (p = 0.002, r = - 0.50). Bruton's tyrosine kinase expression was higher in circulating IPF B-cells compared to HC, indicating enhanced B-cell activation. Bleomycin-exposed mice had increased pulmonary IgA+ germinal center and plasma cell proportions compared to control mice. The degree of lung fibrosis correlated with pulmonary germinal center B-cell proportions (p = 0.010, r = 0.88). CONCLUSION: Our study demonstrates that IPF patients have more circulating activated B-cells and autoreactive IgA, which correlate with disease progression. These B-cell alterations were also observed in the widely used mouse model of experimental pulmonary fibrosis. Autoreactive IgA could be useful as a biomarker for disease progression in IPF

    T helper 17 cells are involved in the local and systemic inflammatory response in community-acquired pneumonia

    No full text
    Background Recent findings in mouse models suggest that T helper (Th)17 cells, characterised by production of interleukin (IL)-17A and IL-22, are involved in the immunopathogenesis of pneumonia. Objective In this study, we aimed to identify the involvement of Th17 cells in human community-acquired pneumonia (CAP). Design Within 24 h of admission, T cells from peripheral blood (n=39) and bronchoalveolar lavage (BAL, n=20) of CAP patients and of 10 healthy individuals were analysed by intracellular flow cytometry for the production of various cytokines, including IL-17A and IL-22. Peripheral blood T cells were also analysed 7 and 30 days after admission. Th17 cytokine profiles were correlated with pneumonia severity index and microbial aetiology. Results In the BAL of CAP patients, proportions of IL17A and IL-22 single positive, as well as IL-17A/IL-22 double positive CD4 T cells were significantly increased compared with healthy individuals. Significantl

    IFN-γproducing t-helper 17.1 cells are increased in sarcoidosis and are more prevalent than t-helper type 1 cells

    No full text
    Rationale: Pulmonary sarcoidosis is classically defined by T-helper (Th) cell type 1 inflammation (e.g., IFN-γ production by CD4(+) effector T cells). Recently, IL-17A–secreting cells have been found in lung lavage, invoking Th17 immunity in sarcoidosis. Studies also identified IL-17A–secreting cells that expressed IFN-γ, but their abundance as a percentage of total CD4(+) cells was either low or undetermined. Objectives: Based on evidence that Th17 cells can be polarized to Th17.1 cells to produce only IFN-γ, our goal was to determine whether Th17.1 cells are a prominent source of IFN-γ in sarcoidosis. Methods: We developed a single-cell approach to define and isolate major Th-cell subsets using combinations of chemokine receptors and fluorescence-activated cell sorting. We subsequently confirmed the accuracy of subset enrichment by measuring cytokine production. Measurements and Main Results: Discrimination between Th17 and Th17.1 cells revealed very high percentages of Th17.1 cells in lung lavage in sarcoidosis compared with controls in two separate cohorts. No differences in Th17 or Th1 lavage cells were found compared with controls. Lung lavage Th17.1-cell percentages were also higher than Th1-cell percentages, and approximately 60% of Th17.1-enriched cells produced only IFN-γ. Conclusions: Combined use of surface markers and functional assays to study CD4(+) T cells in sarcoidosis revealed a marked expansion of Th17.1 cells that only produce IFN-γ. These results suggest that Th17.1 cells could be misclassified as Th1 cells and may be the predominant producer of IFN-γ in pulmonary sarcoidosis, challenging the Th1 paradigm of pathogenesis
    corecore