466 research outputs found

    Advances in the molecular understanding of biological zinc transport

    Get PDF
    Between 5 and 10% of all proteins of a given organism are estimated to require zinc for function, and hence zinc is essential for almost any given metabolic process. It is therefore of great interest to understand major players and mechanisms that ensure the tight and correct control of zinc distribution and speciation in organisms and their individual cells. Significant progress has been made in recent years regarding 3-dimensional structures and modes of action of zinc sensor proteins, membrane-bound zinc transporters for cellular and sub-cellular uptake and efflux, as well as intracellular binding proteins. This feature article highlights advances in structures, zinc-binding sites and thermodynamics of proteins that are involved in zinc homeostasis and trafficking, including developments in understanding the metal selectivity of proteins

    An Analysis of High Accident Rates

    Get PDF

    The type 4 metallothionein from Brassica napus seeds folds in a metal-dependent fashion and favours zinc over other metals

    Get PDF
    The problem of handling zinc in the cell is of great importance because zinc is an indis-pensable micronutrient involved in most physiological processes in all living organisms. Moreover, our understanding of mechanisms governing the discrimination between mi-cronutrients and toxic metals on the level of individual proteins to the whole-organism level is incomplete. Metallothioneins are able to bind heavy metal ions, and roles in zinc homeostasis have been proposed. Here, we have studied the in vitro and in vivo metal-binding abilities of Brassica napus type 4 metallothionein (BnMT4) and its expression in germinating seeds in response to metal treatment. Our studies on the regulation of MT4 expression by metals at early stages of ontogenic development revealed for the first time that the mRNA levels of BnMT4 were elevated in response to cadmium and zinc. Given this unexpected metalloregulation, and the dramatic differences in protein folding as de-tected by 1H NMR spectroscopy, we suggest that the BnMT4 protein may not only have a role in zinc homeostasis in early ontogenesis, but also the potential to discriminate be-tween zinc and cadmium, perhaps via differential recognition of Cd- and Zn-complexes by cellular components involved in protein turnover

    Earthworm Lumbricus rubellus MT-2 : metal binding and protein folding of a true Cadmium-MT

    Get PDF
    Earthworms express, as most animals, metallothioneins (MTs)—small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo

    Allosteric modulation of zinc speciation by fatty acids

    Get PDF
    Background: Serum albumin is the major protein component of blood plasma and is responsible for the circulatory transport of a range of small molecules that include fatty acids, hormones, metal ions and drugs. Studies examining the ligand-binding properties of albumin make up a large proportion of the literature. However, many of these studies do not address the fact that albumin carries multiple ligands (including metal ions) simultaneously in vivo. Thus the binding of a particular ligand may influence both the affinity and dynamics of albumin interactions with another. Scope of review: Here we review the Zn2 + and fatty acid transport properties of albumin and highlight an important interplay that exists between them. Also the impact of this dynamic interaction upon the distribution of plasma Zn2 +, its effect upon cellular Zn2 + uptake and its importance in the diagnosis of myocardial ischemia are considered. Major conclusions: We previously identified the major binding site for Zn2 + on albumin. Furthermore, we revealed that Zn2 +-binding at this site and fatty acid-binding at the FA2 site are interdependent. This suggests that the binding of fatty acids to albumin may serve as an allosteric switch to modulate Zn2 +-binding to albumin in blood plasma. General significance: Fatty acid levels in the blood are dynamic and chronic elevation of plasma fatty acid levels is associated with some metabolic disorders such as cardiovascular disease and diabetes. Since the binding of Zn2 + to albumin is important for the control of circulatory/cellular Zn2 + dynamics, this relationship is likely to have important physiological and pathological implications. This article is part of a Special Issue entitled Serum Albumin

    Biophysical characterization of a protein for structure comparison : methods for identifying insulin structural changes

    Get PDF
    Although protein structure has been studied for many decades it remains the case that we cannot state with confidence whether two samples have the same molecular structure, particularly in solution. The increasing number of biosimilar biopharmaceutical drugs that are being tested means this is not an academic exercise. In this work we consider how four well-established techniques: dynamic light scattering (DLS), circular dichroism (CD), nuclear magnetic resonance spectroscopy (NMR), and molecular modelling can be combined to provide information about the supposedly well-understood protein insulin. A goal of this work was to establish a systematic means of detecting differences between insulin samples as a function of pH, temperature, and the presence or absence of zinc, all of which are known to change the oligomerisation state and to affect molecular structure. We used the recently developed Secondary Structure Neural Network (SSNN) circular dichroism algorithm to facilitate analysis of the CD spectra

    O2-independent demethylation of trimethylamine N-oxide by Tdm of Methylocella silvestris

    Get PDF
    Bacterial trimethylamine N-oxide (TMAO) demethylase, Tdm, carries out an unusual oxygen-independent demethylation reaction, resulting in the formation of dimethylamine and formaldehyde. In this study, sitedirected mutagenesis, homology modelling and metal analyses by inorganic mass spectrometry have been applied to gain insight into metal stoichiometry and underlying catalytic mechanism of Tdm of Methylocella silvestris BL2. Herein, we demonstrate that active Tdm has 1 molar equivalent of Zn2+ and 1 molar equivalent of non-heme Fe2+. We further investigated Zn2+ and Fe2+-binding sites through homology modelling and sitedirected mutagenesis and found that Zn2+ is coordinated by a 3-sulfur-1-O motif. An aspartate residue (D198) likely bridges Fe2+ and Zn2+ centres, either directly or indirectly via H-bonding through a neighbouring H2O molecule. H276 contributes to Fe2+ binding, mutation of which results in an inactive enzyme, and the loss of iron, but not zinc. Site-directed mutagenesis of Tdm also led to the identification of three hydrophobic aromatic residues likely involved in substrate coordination (F259, Y305, W321), potentially through a cation- interaction. Furthermore, a cross-over experiment using a substrate analogue gave direct evidence that a trimethylamine-alike intermediate was produced during the Tdm catalytic cycle, suggesting TMAO has a dual role of being both a substrate and an oxygen donor for formaldehyde formation. Together, our results provide novel insight into the role of Zn2+ and Fe2+ in the catalysis of TMAO demethylation by this unique oxygenindependent enzyme
    corecore