532 research outputs found
An airport wind shear detection and warning system using Doppler radar: A feasibility study
A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path
Jet transport performance in thunderstorm wind shear conditions
Several hours of three dimensional wind data were collected in the thunderstorm approach-to-landing environment, using an instrumented Queen Air airplane. These data were used as input to a numerical simulation of aircraft response, concentrating on fixed-stick assumptions, while the aircraft simulated an instrument landing systems approach. Output included airspeed, vertical displacement, pitch angle, and a special approach deterioration parameter. Theory and the results of approximately 1000 simulations indicated that about 20 percent of the cases contained serious wind shear conditions capable of causing a critical deterioration of the approach. In particular, the presence of high energy at the airplane's phugoid frequency was found to have a deleterious effect on approach quality. Oscillations of the horizontal wind at the phugoid frequency were found to have a more serious effect than vertical wind. A simulation of Eastern flight 66, which crashed at JFK in 1975, served to illustrate the points of the research. A concept of a real-time wind shear detector was outlined utilizing these results
Recommended from our members
Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications
Recent studies of terminal Neoproterozoic rocks (ca. 590–543 Ma) in the Lesser Himalaya of northwestern India and the Yangtze block (south China) reveal remarkably similar facies assemblages and carbonate platform architecture, with distinctive karstic unconformities at comparable stratigraphic levels. These similarities suggest that south China may have been located close to northwestern India during late Neoproterozoic time, an interpretation permitted by the available, yet sparse paleomagnetic data. Additional parallels in older rocks of both blocks—similar rift-related siliciclastic-volcanic successions overlying metamorphic basement, and comparable glaciogenic intervals of possibly Sturtian and Marinoan or Varanger age—suggest that this spatial relationship may have developed earlier in the Neoproterozoic. With the exception of basal Cambrian phosphorite and comparable small shelly fossils, stratigraphic contrasts between northern India and south China and increasing biogeographic affinity between south China and northwestern Australia suggest that south China may have migrated toward northwestern Australia during the Cambrian
Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons
We investigate the dynamics of a double quantum dot charge qubit which is
coupled to piezoelectric acoustic phonons, appropriate for GaAs
heterostructures. At low temperatures, the phonon bath induces a non-Markovian
dynamical behavior of the oscillations between the two charge states of the
double quantum dot. Upon applying the numerically exact quasiadiabatic
propagator path-integral scheme, the reduced density matrix of the charge qubit
is calculated, thereby avoiding the Born-Markov approximation. This allows a
systematic study of the dependence of the Q-factor on the lattice temperature,
on the size of the quantum dots, as well as on the interdot coupling. We
calculate the Q-factor for a recently realized experimental setup and find that
it is two orders of magnitudes larger than the measured value, indicating that
the decoherence due to phonons is a subordinate mechanism.Comment: 5 pages, 7 figures, replaced with the version to appear in Phys. Rev.
Recommended from our members
Are Proterozoic Cap Carbonates and Isotopic Excursions a Record of Gas Hydrate Destabilization Following Earth’s Coldest Intervals
Regionally persistent, thin intervals of carbonate rock directly and ubiquitously overlie Proterozoic glacial deposits on almost every continent, and are commonly referred to as cap carbonates. Their unusual facies, stratigraphically abrupt basal and upper contacts, and strongly negative carbon isotopic signature (δ13C values between ∼0‰ and −5‰) suggest a chemical oceanographic origin, the details of which remain unresolved. Here we propose that these enigmatic deposits are related to the destabilization of gas hydrate in terrestrial permafrost following rapid postglacial warming and flooding of widely exposed continental shelves and interior basins. Supporting evidence for this hypothesis includes (1) the common occurrence within the cap carbonates of unusual fabrics, similar to those produced by cold methane seeps; (2) a distinctive time evolution for the carbon isotopic excursions indicative of a pulse addition of isotopically depleted carbon to the ocean- atmosphere system; and (3) agreement between mass-balance estimates of carbon released by hydrate destabilization and carbon buried in the cap carbonate. We infer that during times of low-latitude glaciation, characteristic of the Neoproterozoic, gas hydrates may have been in greater abundance than at any other time in Earth history
Recommended from our members
Reply
The authors address additional comments on their hypothesis for the origin of Neoproterozoic postglacial cap carbonates and their isotopic excursions
Red Blood Cells and Turbulence
Measurements were made of the turbulence intensity of blood of various hematocrits (volume percentage of red cells in blood) flowing through an orifice. The maximum relative turbulence intensity was found to occur in the hematocrit range of 20% - 30%
Considering a Neoproterozoic Snowball Earth
P. F. Hoffman et al. and N. Christie-Blick et al. discuss Hoffman et al.'s paper that "developed a modified 'snowball Earth' hypothesis (2) to explain the association of Neoproterozoic low-latitude glaciation with the deposition of 'cap carbonate' rocks bearing highly depleted carbon isotopic values (δ13C ≤ −5‰). According to Hoffman et al., the ocean became completely frozen over as a result of a runaway albedo feedback, and primary biological productivity collapsed for an interval of geological time exceeding the carbon residence time (greater than 105 years). During this interval, continental ice cover is inferred to have been thin and patchy owing to the virtual elimination of the hydrological cycle.
Recommended from our members
Reply
The authors respond to Hoffman et al. (2001), who acknowledged that methane may have played an important role in unusual events associated with Neoproterozoic glaciation, but questioned the authors' permafrost gas hydrate hypothesis for 13C-depleted cap carbonate formation. The critique focused on three issues: (1) an interpretation for tube structures in cap carbonates unrelated to gas migration; (2) the absence of a suitable source for methane gas; and (3) the degree of 13C depletion in sheet-crack cements
- …