142 research outputs found
Measuring mechanical motion with a single spin
We study theoretically the measurement of a mechanical oscillator using a
single two level system as a detector. In a recent experiment, we used a single
electronic spin associated with a nitrogen vacancy center in diamond to probe
the thermal motion of a magnetized cantilever at room temperature {Kolkowitz et
al., Science 335, 1603 (2012)}. Here, we present a detailed analysis of the
sensitivity limits of this technique, as well as the possibility to measure the
zero point motion of the oscillator. Further, we discuss the issue of
measurement backaction in sequential measurements and find that although
backaction heating can occur, it does not prohibit the detection of zero point
motion. Throughout the paper we focus on the experimental implementation of a
nitrogen vacancy center coupled to a magnetic cantilever; however, our results
are applicable to a wide class of spin-oscillator systems. Implications for
preparation of nonclassical states of a mechanical oscillator are also
discussed.Comment: 17 pages, 6 figure
Recommended from our members
Polarized proton-neutron total cross sections from proton-deuteron data
Simple expressions are derived for the polarized proton-deuteron total cross sections. Possibilities of extraction of the polarized proton-neutron cross sections from the proton-deuteron data are discussed. 19 references
Quadrupole deformation of deuterons and final state interaction in scattering on tensor polarized deuterons at CEBAF energies
The strength of final state interaction (FSI) between struck proton and
spectator neutron in scattering depends on the alignment of
the deuteron. We study the resulting FSI effects in the tensor analyzing power
in detail and find substantial FSI effects starting at still low missing
momentum p_m \gsim 0.9 fm^{-1}. At larger p_m \gsim 1.5 fm^{-1}, FSI
completely dominates both missing momentum distribution and tensor analyzing
power. We find that to a large extent FSI masks the sensitivity of the tensor
analyzing power to models of the deuteron wave function. For the transversely
polarized deuterons the FSI induced forward-backward asymmetry of the missing
momentum distribution is shown to have a node at precisely the same value of
as the PWIA missing momentum distribution. The position of this node is
not affected by FSI and can be a tool to distinguish experimentally between
different models for the deuteron wave function.Comment: 24 pages, figures available from the authors on reques
Tensor Ayy and vector Ay analyzing powers in the H(d,d')X and ^{12}C(d,d')X reactons at initial deuteron momenta of 9 GeV/c in the region of baryonic resonances excitation
The angular dependence of the tensor Ayy and vector Ay analyzing powers in
the inelastic scattering of deuterons with a momentum of 9.0 GeV/c on hydrogen
and carbon have been measured. The range of measurements corresponds to the
baryonic resonance excitation with masses 2.2--2.6 GeV/c^2. The Ayy data being
in good agreement with the previous results demonstrate an approximate
scaling up to -1.5 (GeV/c)^2. The large values of A_y show a significant role
of the spin-dependent part of the elementary amplitude of the NN->NN* reaction.
The results of the experiment are compared with model predictions of the
plane-wave impulse approximation.Comment: 7 pages, 7 figures. submitted to Yad.Fi
Correlating the nanostructure and electronic properties of InAs nanowires
The electronic properties and nanostructure of InAs nanowires are correlated
by creating multiple field effect transistors (FETs) on nanowires grown to have
low and high defect density segments. 4.2 K carrier mobilities are ~4X larger
in the nominally defect-free segments of the wire. We also find that dark field
optical intensity is correlated with the mobility, suggesting a simple route
for selecting wires with a low defect density. At low temperatures, FETs
fabricated on high defect density segments of InAs nanowires showed transport
properties consistent with single electron charging, even on devices with low
resistance ohmic contacts. The charging energies obtained suggest quantum dot
formation at defects in the wires. These results reinforce the importance of
controlling the defect density in order to produce high quality electrical and
optical devices using InAs nanowires.Comment: Related papers at http://pettagroup.princeton.ed
Complete Set of Polarization Transfer Observables for the Reaction at 296 MeV and 0
A complete set of polarization transfer observables has been measured for the
reaction at and . The total spin transfer and the observable
deduced from the measured polarization transfer observables indicate that
the spin--dipole resonance at has greater
strength than strength, which is consistent with recent experimental and
theoretical studies. The results also indicate a predominance of the spin-flip
and unnatural-parity transition strength in the continuum. The exchange tensor
interaction at a large momentum transfer of is
discussed.Comment: 4 pages, 4 figure
- …