687 research outputs found

    Damping and decoherence of Fock states in a nanomechanical resonator due to two level systems

    Full text link
    We numerically investigate the decay of initial quantum Fock states and their superpositions for a mechanical resonator mode coupled to an environment comprising interacting, damped tunneling two level system (TLS) defects. The cases of one, three, and six near resonant, interacting TLS's are considered in turn and it is found that the resonator displays Ohmic bath like decay behavior with as few as three TLS's.Comment: 28 pages, 24 figures; submitted to Physical Review

    Mesoscopic Mechanical Resonators as Quantum Non-Inertial Reference Frames

    Get PDF
    An atom attached to a micrometer-scale wire that is vibrating at a frequency of 100 MHz and with displacement amplitude 1 nm experiences an acceleration magnitude 10^9 ms^-2, approaching the surface gravity of a neutron star. As one application of such extreme non-inertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a non-inertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum non-inertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.Comment: Published versio

    Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper box

    Get PDF
    We analyse the quantum dynamics of a micromechanical resonator capacitively coupled to a Cooper box. With appropriate quantum state control of the Cooper box, the resonator can be driven into a superposition of spatially separated states. The Cooper box can also be used to probe the environmentally-induced decoherence of the resonator superposition state.Comment: 4 pages, 3 figure

    Steering of a Bosonic Mode with a Double Quantum Dot

    Full text link
    We investigate the transport and coherence properties of a double quantum dot coupled to a single damped boson mode. Our numerically results reveal how the properties of the boson distribution can be steered by altering parameters of the electronic system such as the energy difference between the dots. Quadrature amplitude variances and the Wigner function are employed to illustrate how the state of the boson mode can be controlled by a stationary electron current through the dots.Comment: 10 pages, 6 figures, to appear in Phys. Rev.
    • …
    corecore