259 research outputs found

    Detection of synchronization from univariate data using wavelet transform

    Full text link
    A method is proposed for detecting from univariate data the presence of synchronization of a self-sustained oscillator by external driving with varying frequency. The method is based on the analysis of difference between the oscillator instantaneous phases calculated using continuous wavelet transform at time moments shifted by a certain constant value relative to each other. We apply our method to a driven asymmetric van der Pol oscillator, experimental data from a driven electronic oscillator with delayed feedback and human heartbeat time series. In the latest case, the analysis of the heart rate variability data reveals synchronous regimes between the respiration and slow oscillations in blood pressure.Comment: 10 pages, 9 figure

    Ixodid Ticks: Possible Vectors of Tuberculosis

    Get PDF
    From these tests, we established that artificially and naturally fed ticks are susceptible to the infective source and preserve tuberculosis mycobacteria in the body for a long period

    Duration of the Process of Complete Synchronizationof Two Coupled Identical Chaotic Systems

    Full text link
    We consider the time required for complete synchronization of two identical one-way coupled vander Pol-Duffing oscillators occurring in the regime of dynamic chaos. The influence of the initial phase differ-ence between oscillators on the duration of the process of complete synchronization has been studied. At a fixedphase of chaotic oscillations of the self-excited drive oscillator, the period of time (past the coupling onset) during which the complete synchronization regime is established depends on the phase of the self-excited responseoscillatorComment: 4 pages, 2 figure

    A Genome-Wide Study of DNA Methylation Patterns and Gene Expression Levels in Multiple Human and Chimpanzee Tissues

    Get PDF
    The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%–18% of differences in gene expression levels between humans and chimpanzees

    Mechanisms Behind the Generalized Synchronization Conditions

    Full text link
    A universal mechanism underlying generalized synchronization conditions in unidirectionally coupled stochastic oscillators is considered. The consideration is carried out in the framework of a modified system with additional dissipation. The approach developed is illustrated with model examples. The conclusion is reached that two types of the behavior of nonlinear dynamic systems known as generalized synchronization and noise-induced synchronization, which are viewed as different phenomena, actually represent a unique type of the synchronous behavior of stochastic oscillators and are caused by the same mechanism.Comment: 8 pages, 5 figure

    Analysis of vibration impact on stability of dewetting thin liquid film

    Full text link
    Dynamics of a thin dewetting liquid film on a vertically oscillating substrate is considered. We assume moderate vibration frequency and large (compared to the mean film thickness) vibration amplitude. Using the lubrication approximation and the averaging method, we formulate the coupled sets of equations governing the pulsatile and the averaged fluid flows in the film, and then derive the nonlinear amplitude equation for the averaged film thickness. We show that there exists a window in the frequency-amplitude domain where the parametric and shear-flow instabilities of the pulsatile flow do not emerge. As a consequence, in this window the averaged description is reasonable and the amplitude equation holds. The linear and nonlinear analyses of the amplitude equation and the numerical computations show that such vibration stabilizes the film against dewetting and rupture.Comment: 19 pages, 11 figure

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Different level of population differentiation among human genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations.</p> <p>Results</p> <p>Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher <it>F</it><sub>ST </sub>SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection.</p> <p>Conclusion</p> <p>Our analysis demonstrates different level of population differentiation among human populations for different gene groups.</p
    corecore