21 research outputs found

    Computer versus cardiologist: Is a machine learning algorithm able to outperform an expert in diagnosing a phospholamban p.Arg14del mutation on the electrocardiogram?

    Get PDF
    Background Phospholamban (PLN) p.Arg14del mutation carriers are known to develop dilated and/or arrhythmogenic cardiomyopathy, and typical electrocardiographic (ECG) features have been identified for diagnosis. Machine learning is a powerful tool used in ECG analysis and has shown to outperform cardiologists. Objectives We aimed to develop machine learning and deep learning models to diagnose PLN p.Arg14del cardiomyopathy using ECGs and evaluate their accuracy compared to an expert cardiologist. Methods We included 155 adult PLN mutation carriers and 155 age- and sex-matched control subjects. Twenty-one PLN mutation carriers (13.4%) were classified as symptomatic (symptoms of heart failure or malignant ventricular arrhythmias). The data set was split into training and testing sets using 4-fold cross-validation. Multiple models were developed to discriminate between PLN mutation carriers and control subjects. For comparison, expert cardiologists classified the same data set. The best performing models were validated using an external PLN p.Arg14del mutation carrier data set from Murcia, Spain (n = 50). We applied occlusion maps to visualize the most contributing ECG regions. Results In terms of specificity, expert cardiologists (0.99) outperformed all models (range 0.53–0.81). In terms of accuracy and sensitivity, experts (0.28 and 0.64) were outperformed by all models (sensitivity range 0.65–0.81). T-wave morphology was most important for classification of PLN p.Arg14del carriers. External validation showed comparable results, with the best model outperforming experts. Conclusion This study shows that machine learning can outperform experienced cardiologists in the diagnosis of PLN p.Arg14del cardiomyopathy and suggests that the shape of the T wave is of added importance to this diagnosis

    Sex- and age specific association of new-onset atrial fibrillation with in-hospital mortality in hospitalised COVID-19 patients

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) is a systemic disease with cardiovascular involvement, including cardiac arrhythmias. Notably, new-onset atrial fibrillation (AF) and atrial flutter (AFL) during hospitalisation in COVID-19 patients has been associated with increased mortality. However, how this risk is impacted by age and sex is still poorly understood. METHODS: For this multicentre cohort study, we extracted demographics, medical history, occurrence of electrical disorders and in-hospital mortality from the large international patient registry CAPACITY-COVID. For each electrical disorder, prevalence during hospitalisation was calculated. Subsequently, we analysed the incremental prognostic effect of developing AF/AFL on in-hospital mortality, using multivariable logistic regression analyses, stratified for sex and age. RESULTS: In total, 5782 patients (64% male; median age 67) were included. Of all patients 11.0% (95% CI 10.2–11.8) experienced AF and 1.6% (95% CI 1.3–1.9) experienced AFL during hospitalisation. Ventricular arrhythmias were rare (<0.8% (95% CI 0.6–1.0)) and a conduction disorder was observed in 6.3% (95% CI 5.7–7.0). An event of AF/AFL appeared to occur more often in patients with pre-existing heart failure. After multivariable adjustment for age and sex, new-onset AF/AFL was significantly associated with a poorer prognosis, exemplified by a two- to three-fold increased risk of in-hospital mortality in males aged 60–72 years, whereas this effect was largely attenuated in older male patients and not observed in female patients. CONCLUSION: In this large COVID-19 cohort, new-onset AF/AFL was associated with increased in-hospital mortality, yet this increased risk was restricted to males aged 60–72 years

    Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning

    Get PDF
    Background and purpose: The electrocardiogram (ECG) is frequently obtained in the work-up of COVID-19 patients. So far, no study has evaluated whether ECG-based machine learning models have added value to predict in-hospital mortality specifically in COVID-19 patients. / Methods: Using data from the CAPACITY-COVID registry, we studied 882 patients admitted with COVID-19 across seven hospitals in the Netherlands. Raw format 12-lead ECGs recorded within 72 h of admission were studied. With data from five hospitals (n = 634), three models were developed: (a) a logistic regression baseline model using age and sex, (b) a least absolute shrinkage and selection operator (LASSO) model using age, sex and human annotated ECG features, and (c) a pre-trained deep neural network (DNN) using age, sex and the raw ECG waveforms. Data from two hospitals (n = 248) was used for external validation. / Results: Performances for models a, b and c were comparable with an area under the receiver operating curve of 0.73 (95% confidence interval [CI] 0.65–0.79), 0.76 (95% CI 0.68–0.82) and 0.77 (95% CI 0.70–0.83) respectively. Predictors of mortality in the LASSO model were age, low QRS voltage, ST depression, premature atrial complexes, sex, increased ventricular rate, and right bundle branch block. / Conclusion: This study shows that the ECG-based prediction models could be helpful for the initial risk stratification of patients diagnosed with COVID-19, and that several ECG abnormalities are associated with in-hospital all-cause mortality of COVID-19 patients. Moreover, this proof-of-principle study shows that the use of pre-trained DNNs for ECG analysis does not underperform compared with time-consuming manual annotation of ECG features

    A deep learning approach identifies new ECG features in congenital long QT syndrome

    No full text
    Background: Congenital long QT syndrome (LQTS) is a rare heart disease caused by various underlying mutations. Most general cardiologists do not routinely see patients with congenital LQTS and may not always recognize the accompanying ECG features. In addition, a proportion of disease carriers do not display obvious abnormalities on their ECG. Combined, this can cause underdiagnosing of this potentially life-threatening disease. Methods: This study presents 1D convolutional neural network models trained to identify genotype positive LQTS patients from electrocardiogram as input. The deep learning (DL) models were trained with a large 10-s 12-lead ECGs dataset provided by Amsterdam UMC and externally validated with a dataset provided by University Hospital Leuven. The Amsterdam dataset included ECGs from 10000 controls, 172 LQTS1, 214 LQTS2, and 72 LQTS3 patients. The Leuven dataset included ECGs from 2200 controls, 32 LQTS1, and 80 LQTS2 patients. The performance of the DL models was compared with conventional QTc measurement and with that of an international expert in congenital LQTS (A.A.M.W). Lastly, an explainable artificial intelligence (AI) technique was used to better understand the prediction models. Results: Overall, the best performing DL models, across 5-fold cross-validation, achieved on average a sensitivity of 84 ± 2%, 90 ± 2% and 87 ± 6%, specificity of 96 ± 2%, 95 ± 1%, and 92 ± 4%, and AUC of 0.90 ± 0.01, 0.92 ± 0.02, and 0.89 ± 0.03, for LQTS 1, 2, and 3 respectively. The DL models were also shown to perform better than conventional QTc measurements in detecting LQTS patients. Furthermore, the performances held up when the DL models were validated on a novel external cohort and outperformed the expert cardiologist in terms of specificity, while in terms of sensitivity, the DL models and the expert cardiologist in LQTS performed the same. Finally, the explainable AI technique identified the onset of the QRS complex as the most informative region to classify LQTS from non-LQTS patients, a feature previously not associated with this disease. Conclusions: This study suggests that DL models can potentially be used to aid cardiologists in diagnosing LQTS. Furthermore, explainable DL models can be used to possibly identify new features for LQTS on the ECG, thus increasing our understanding of this syndrome

    Current state of artificial intelligence-based algorithms for hospital admission prediction in patients with heart failure: A scoping review

    No full text
    Aims: Patients with congestive heart failure (HF) are prone to clinical deterioration leading to hospital admissions, burdening both patients and the healthcare system. Predicting hospital admission in this patient group could enable timely intervention, with subsequent reduction of these admissions. To date, hospital admission prediction remains challenging. Increasing amounts of acquired data and development of artificial intelligence (AI) technology allow for the creation of reliable hospital prediction algorithms for HF patients. This scoping review describes the current literature on strategies and performance of AI-based algorithms for prediction of hospital admission in patients with HF. Methods and results: PubMed, EMBASE, and the Web of Science were used to search for articles using machine learning (ML) and deep learning methods to predict hospitalization in patients with HF. After eligibility screening, 23 articles were included. Sixteen articles predicted 30-day hospital (re-)admission resulting in an area under the curve (AUC) ranging from 0.61 to 0.79. Six studies predicted hospital admission over longer time periods ranging from 6 months to 3 years, with AUC's ranging from 0.65 to 0.78. One study prospectively evaluated performance of a disposable sensory patch at home after hospitalization which resulted in an AUC of 0.89 for unplanned hospital admission prediction. Conclusion: AI has the potential to enable prediction of hospital admission in HF patients. Improvement of data management, adding new data sources such as telemonitoring data and ML models and prospective and external validation of current models must be performed before clinical applicability is possible

    Sex- and age specific association of new-onset atrial fibrillation with in-hospital mortality in hospitalised COVID-19 patients

    No full text
    Background: Coronavirus disease 2019 (COVID-19) is a systemic disease with cardiovascular involvement, including cardiac arrhythmias. Notably, new-onset atrial fibrillation (AF) and atrial flutter (AFL) during hospitalisation in COVID-19 patients has been associated with increased mortality. However, how this risk is impacted by age and sex is still poorly understood. Methods: For this multicentre cohort study, we extracted demographics, medical history, occurrence of electrical disorders and in-hospital mortality from the large international patient registry CAPACITY-COVID. For each electrical disorder, prevalence during hospitalisation was calculated. Subsequently, we analysed the incremental prognostic effect of developing AF/AFL on in-hospital mortality, using multivariable logistic regression analyses, stratified for sex and age. Results: In total, 5782 patients (64% male; median age 67) were included. Of all patients 11.0% (95% CI 10.2–11.8) experienced AF and 1.6% (95% CI 1.3–1.9) experienced AFL during hospitalisation. Ventricular arrhythmias were rare (<0.8% (95% CI 0.6–1.0)) and a conduction disorder was observed in 6.3% (95% CI 5.7–7.0). An event of AF/AFL appeared to occur more often in patients with pre-existing heart failure. After multivariable adjustment for age and sex, new-onset AF/AFL was significantly associated with a poorer prognosis, exemplified by a two- to three-fold increased risk of in-hospital mortality in males aged 60–72 years, whereas this effect was largely attenuated in older male patients and not observed in female patients. Conclusion: In this large COVID-19 cohort, new-onset AF/AFL was associated with increased in-hospital mortality, yet this increased risk was restricted to males aged 60–72 years

    PO-631-03 DEEP LEARNING FOR THE IDENTIFICATION OF PATIENTS WITH A HIGH RISK FOR IDIOPATHIC VENTRICULAR FIBRILLATION

    No full text
    A DPP6 gene risk haplotype, putatively enhancing Purkinje fiber transient outward current Ito, associates with familial idiopathic ventricular fibrillation (IVF). Outside this genetic disposition, no clinical risk factors nor ECG features for IVF have so far been identified to recognize those at risk for IVF. We aimed to develop deep learning (DL) models to predict the DPP6 risk haplotype on ECG and use explainable DL to uncover the ECG specificities recognized by DL. Raw 12 lead ECG data of DPP6 risk haplotype carriers (n=156) and genotype negative family members (n=156) were analyzed by multiple Convolutional Neural Networks (CNNs) with various data preprocessing strategies, using 5-fold cross-validation for testing. For each patient, the first recorded out-patient clinic ECG was used. Gradient weighted Class Activation Mapping (GradCAM) visualized the ECG specificities most important for a 2-Dimensional (2D) CNN. The Area Under the Curve Receiver Operating Characteristic (AUC) of the different models to differentiate DPP6 positive from negative family members, was 0.69-0.85. The best performing DL models were a 1D CNN (AUC 0.85) using raw waveform data and a 2D CNN (AUC 0.82) using an image of the mean P-QRS-T complex of each lead. 2D CNN GradCAM showed the QRS complexes of leads I and V5, among other activated ECG regions, to be most important

    ECG Changes during Adult Life in Fabry Disease: Results from a Large Longitudinal Cohort Study

    Get PDF
    Background: Fabry disease (FD) is an X-linked, lysosomal storage disorder leading to severe cardiomyopathy in a significant proportion of patients. To identify ECG markers that reflect early cardiac involvement and disease progression, we conducted a long term retrospective study in a large cohort of FD patients. Methods: A total of 1995 ECGs from 133 patients with classical FD (64% females, 80% treated with enzyme replacement therapy), spanning 20 years of follow-up, were compared to ECGs from 3893 apparently healthy individuals. Generalized linear mixed models were used to evaluate the effect of age, FD and sex on: P-wave duration, PR-interval, QRS-duration, QTc, Cornell index, spatial QRS-T angle and frontal QRS-axis. Regression slopes and absolute values for each parameter were compared between FD patients and control subjects. Results: At a younger age (<40 years), the Cornell index was higher and frontal QRS-axis more negative in FD patients compared to controls (p < 0.05). For the other ECG parameters, the rate of change, more than the absolute value, was greater in FD patients compared to controls (p < 0.05). From the fifth decade (men) or sixth (women) onwards, absolute values for P-wave duration, QRS-duration, QTc and spatial QRS-T angle were longer and higher in FD patients compared to control subjects. Conclusions: ECG abnormalities indicative of FD are age and sex dependent. Tracking the rate of change in ECG parameters could be a good way to detect disease progression, guiding treatment initiation. Moreover, monitoring ECG changes in FD can be used to evaluate the effectiveness of treatment
    corecore