76 research outputs found
Temozolomide followed by combined immunotherapy with GM-CSF, low-dose IL2 and IFNα in patients with metastatic melanoma
The purpose of this study is to determine the toxicity and efficacy of temozolomide (TMZ) p.o. followed by subcutaneous (s.c.) low-dose interleukin-2 (IL2), granulocyte-monocyte colony stimulating factor (GM-CSF) and interferon-alpha 2b (IFN alpha) in patients with metastatic melanoma. A total of 74 evaluable patients received, in four separate cohorts, escalating doses of TMZ (150-250 mg m(-2)) for 5 days followed by s.c. IL2 (4 MIU m(-2)), GM-CSF (2.5 microg kg(-1)) and IFN alpha (5 MIU flat) for 12 days. A second identical treatment was scheduled on day 22 and cycles were repeated in stable or responding patients following evaluation. Data were analysed after a median follow-up of 20 months (12-30 months). The overall objective response rate was 31% (23 out of 74; confidence limits 20.8-42.9%) with 5% CR. Responses occurred in all disease sites including the central nervous system (CNS). Of the 36 patients with responding or stable disease, none developed CNS metastasis as the first or concurrent site of progressive disease. Median survival was 252 days (8.3 months), 1 year survival 41%. Thrombocytopenia was the primary toxicity of TMZ and was dose- and patient-dependent. Lymphocytopenia (grade 3-4 CTC) occurred in 48.5% (34 out of 70) fully monitored patients following TMZ and was present after immunotherapy in two patients. The main toxicity of combined immunotherapy was the flu-like syndrome (grade 3) and transient liver function disturbances (grade 2 in 20, grade 3 in 15 patients). TMZ p.o. followed by s.c. combined immunotherapy demonstrates efficacy in patients with stage IV melanoma and is associated with toxicity that is manageable on an outpatient basi
Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison
<p>Abstract</p> <p>Background</p> <p>Biological brain tumor imaging using O-(2-[<sup>18</sup>F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.</p> <p>The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets.</p> <p>Methods</p> <p>In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy.</p> <p>Results</p> <p>After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques.</p> <p>Conclusion</p> <p>In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.</p
Recommended from our members
Antimetastatic Nm23 Gene-Product Expression in Keratoacanthoma and Squamous-Cell Carcinoma
- …