13 research outputs found

    River restoration

    No full text
    River restoration is at the forefront of applied hydrologic science. However, many river restoration projects are conducted with minimal scientific context. We propose two themes around which a research agenda to advance the scientific basis for river restoration can be built. First, because natural variability is an inherent feature of all river systems, we hypothesize that restoration of process is more likely to succeed than restoration aimed at a fixed end point. Second, because physical, chemical, and biological processes are interconnected in complex ways across watersheds and across timescales, we hypothesize that restoration projects are more likely to be successful in achieving goals if undertaken in the context of entire watersheds. To achieve restoration objectives, the science of river restoration must include (1) an explicit recognition of the known complexities and uncertainties, (2) continued development of a theoretical framework that enables us to identify generalities among river systems and to ask relevant questions, (3) enhancing the science and use of restoration monitoring by measuring the most effective set of variables at the correct scales of measurement, (4) linking science and implementation, and (5) developing methods of restoration that are effective within existing constraints. Key limitations to river restoration include a lack of scientific knowledge of watershed-scale process dynamics, institutional structures that are poorly suited to large-scale adaptive management, and a lack of political support to reestablish delivery of the ecosystem amenities lost through river degradation. This paper outlines an approach for addressing these shortcomings

    Designing flows to enhance ecosystem functioning in heavily altered rivers

    No full text
    More than a century of dam construction and water development in the western United States has led to extensive ecological alteration of rivers. Growing interest in improving river function is compelling practitioners to consider ecological restoration when managing dams and water extraction. We developed an Ecological Response Model (ERM) for the Cache la Poudre River, northern Colorado, USA, to illuminate effects of current and possible future water management and climate change. We used empirical data and modeled interactions among multiple ecosystem components to capture system‐wide insights not possible with the unintegrated models commonly used in environmental assessments. The ERM results showed additional flow regime modification would further alter the structure and function of Poudre River aquatic and riparian ecosystems due to multiple and interacting stressors. Model predictions illustrated that specific peak flow magnitudes in spring and early summer are critical for substrate mobilization, dynamic channel morphology, and overbank flows, with strong subsequent effects on instream and riparian biota that varied seasonally and spatially, allowing exploration of nuanced management scenarios. Instream biological indicators benefitted from higher and more stable base flows and high peak flows, but stable base flows with low peak flows were only half as effective to increase indicators. Improving base flows while reducing peak flows, as currently proposed for the Cache la Poudre River, would further reduce ecosystem function. Modeling showed that even presently depleted annual flow volumes can achieve substantially different ecological outcomes in designed flow scenarios, while still supporting social demands. Model predictions demonstrated that implementing designed flows in a natural pattern, with attention to base and peak flows, may be needed to preserve or improve ecosystem function of the Poudre River. Improved regulatory policies would include preservation of ecosystem‐level, flow‐related processes and adaptive management when water development projects are considered
    corecore