3 research outputs found

    Challenges of neuropathic pain:focus on diabetic neuropathy

    Get PDF
    Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms

    Modulation of Aire regulates the expression of tissue-restricted antigens

    No full text
    Intrathymic expression of tissue-restricted antigens (TRAs) has been viewed as the key element in the induction of central tolerance and recently, a central role for the autoimmune regulator (Aire) has been suggested in this process. The aim of this study was to establish whether down or up-regulation of Aire leads to alterations in TRA expression and whether this is limited to thymic epithelial cells. This study also characterized whether TRAs follow Aire expression during normal development, and whether thymic microenvironment plays a role in the expression of Aire and TRAs. We did several in vivo and in vitro experiments to manipulate Aire expression and measured expression of four TRAs (Trefoil factor-3, Insulin-2, Major urinary protein-1 and Salivary protein-1) by real-time RT-PCR. Aire had an allele dose-dependent effect on TRA expression in the thymuses of mice from two strains, C57BL/6J and Balb/c, but had no effect on TRA expression in the lymph nodes. In the thymus, Aire and TRAs were both localized in the medulla and were co-expressed during normal development and involution. In the primary stromal cells as well as thymic epithelial cell line, the adenoviral over-expression of Aire resulted in an increase in TRA expression. By manipulating in vitro organ-cultures we showed that thymic microenvironment plays a dominant role in Aire expression whereas TRAs follow the same pattern. The data underline a direct role for Aire in TRA expression and suggest that modulation of Aire has a potential to control central tolerance and autoimmunity

    CMS TriDAS project: Technical Design Report, Volume 1: The Trigger Systems

    No full text
    corecore