3 research outputs found

    Table of Contents

    Get PDF
    Chromosome errors, or aneuploidy, affect an exceptionally high number of human conceptions, causing pregnancy loss and congenital disorders. Here, we have followed chromosome segregation in human oocytes from females aged 9 to 43 years and report that aneuploidy follows a U-curve. Specific segregation error types show different age dependencies, providing a quantitative explanation for the U-curve. Whole-chromosome nondisjunction events are preferentially associated with increased aneuploidy in young girls, whereas centromeric and more extensive cohesion loss limit fertility as women age. Our findings suggest that chromosomal errors originating in oocytes determine the curve of natural fertility in humans. [Abstract copyright: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

    Autophagy maintains the homeostatic environment in the male reproductive accessory organs playing a key role in fertility

    No full text
    Autophagy has been implicated in male fertility but its specific role in the post-testicular organs remains unclear. Here, we investigate this in mice expressing a doxycycline-inducible RNAi against Atg5 (Atg5i). Systemic autophagy inhibition in Atg5i mice resulted in the morphological and functional abrogation of the male accessory sex organs, leading to male subfertility. However, the testis was largely protected, likely due to the limited permeability of doxycycline through the blood-testis barrier. Interestingly, restoration of autophagy by doxycycline withdrawal in Atg5i mice led to substantial recovery of the phenotype in the accessory organs. This model offers a unique opportunity to dissect the pre- and post-testicular roles of autophagy, highlighting the non-autonomous impact of autophagy on male fertility
    corecore