33 research outputs found

    Molecular Characterization and Localization of the NAD(P)H Oxidase Components gp91-phox and p22-phox in Endothelial Cells

    Get PDF
    The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases

    Molecular Characterization and Localization of the NAD(P)H Oxidase Components gp91-phox and p22-phox in Endothelial Cells

    Get PDF
    The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases

    Effect of iron-deficiency anemia on respiratory system of rat cardiac mitochondria [Abstract]

    No full text

    Histamine and a guanine nucleotide increase calcium permeability in pig aortic microsomal fractions

    No full text
    ATP-dependent Ca2+ accumulation was measured in pig aortic microsomal fractions containing plasmalemma and endoplasmic reticulum. In vesicles sonicated with histamine, to allow access to internally located receptor sites, guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), added to activate externally located guanine-nucleotide-transducing proteins, caused a concentration-dependent decrease in steady-state Ca2+ accumulation that was reversed by guanosine 5'-[beta-thio]diphosphate. In the presence of p[NH]ppG, sonication with histamine produced a concentration-dependent inhibition of Ca2+ accumulation that could be antagonized by the H1 antagonist mepyramine, but not by the H2 antagonist cimetidine. The inhibition of steady-state Ca2+ accumulation could have resulted from an inhibition of ATP-dependent Ca2+ uptake or a stimulation of Ca2+ release. We observed, however, that p[NH]ppG plus histamine stimulated, rather than inhibited, Ca2(+)-ATPase activity. We concluded that p[NH]ppG and histamine acted together to increase Ca2+ permeability. In support of this, p[NH]ppG accelerated efflux of Ca2+ from passively loaded vesicles sonicated with, but not without, histamine. The effect of p[NH]ppG was unlikely to be due to Ins(1,4,5)P3 (and hence release from endoplasmic-reticulum vesicles), since addition of Ins(1,4,5)P3 to vesicles sonicated with histamine did not alter steady-state Ca2+ accumulation. Our results therefore suggest that histamine and p[NH]ppG increased the permeability of the plasmalemma vesicles and may thus model the process of receptor-mediated Ca2+ entry into intact cells

    Ryanodine receptor-mediated arrhythmias and sudden cardiac death

    Get PDF
    The cardiacryanodine receptor-Ca2+ release channel (RyR2) is an essential sarcoplasmic reticulum (SR) transmembrane protein that plays a central role in excitation–contraction coupling (ECC) in cardiomyocytes. Aberrant spontaneous, diastolic Ca2+ leak from the SR due to dysfunctional RyR2 contributes to the formation of delayed after-depolarisations, which are thought to underlie the fatal arrhythmia that occurs in both heart failure (HF) and in catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is an inherited disorder associated with mutations in either the RyR2 or a SR luminal protein, calsequestrin. RyR2 shows normal function at rest in CPVT but the RyR2 dysfunction is unmasked by physical exercise or emotional stress, suggesting abnormal RyR2 activation as an underlying mechanism. Several potential mechanisms have been advanced to explain the dysfunctional RyR2 observed in HF and CPVT, including enhanced RyR2 phosphorylation status, altered RyR2 regulation at luminal/cytoplasmic sites and perturbed RyR2 intra/inter-molecular interactions. This review considers RyR2 dysfunction in the context of the structural and functional modulation of the channel, and potential therapeutic strategies to stabilise RyR2 function in cardiac pathology
    corecore