2,272 research outputs found

    Women’s experiences of over-the-counter and prescription medication during pregnancy in the UK: findings from survey free-text responses and narrative interviews

    Get PDF
    OBJECTIVES: To explore women's experiences of over-the-counter and prescription medication advice and use during pregnancy. DESIGN: A study design consisting of an online survey and nested in-depth interviews with a subsample of participants. We analysed data from survey free-text responses and in-depth interviews using thematic analysis. Quantitative survey data is published elsewhere.The UK. PARTICIPANTS: Women were eligible if living in the UK, aged 16-45 years, were pregnant or had been pregnant in the last 5 years regardless of pregnancy outcome. A total of 7090 women completed the survey, and 34 women who collectively had experienced 68 pregnancies were subsequently interviewed. RESULTS: Medication prescribing and use during pregnancy was common. The prescribing, dispensing and taking of some advised medications were restricted through women's or prescribers' fear of fetal harm. Lack of adherence to national prescribing guidance, conflicting professional opinion and poor communication resulted in maternal anxiety, avoidable morbidity and women negotiating complex and distressing pathways to obtain recommended medications. In contrast, some women felt overmedicated and that pharmacological treatments were used without exploring other options first. CONCLUSION: Increased translation of national guidance into practice and greater personalisation of antenatal care are needed to improve the safety, efficacy and personalisation of prescribing in pregnancy

    Spitzer Observations of Low Luminosity Isolated and Low Surface Brightness Galaxies

    Full text link
    We examine the infrared properties of five low surface brightness galaxies (LSBGs) and compare them with related but higher surface brightness galaxies, using Spitzer Space Telescope images and spectra. All the LSBGs are detected in the 3.6 and 4.5um bands, representing the stellar population. All but one are detected at 5.8 and 8.0um, revealing emission from hot dust and aromatic molecules, though many are faint or point-like at these wavelengths. Detections of LSBGs at the far-infrared wavelengths, 24, 70, and 160um, are varied in morphology and brightness, with only two detections at 160um, resulting in highly varied spectral energy distributions. Consistent with previous expectations for these galaxies, we find that detectable dust components exist for only some LSBGs, with the strength of dust emission dependent on the existence of bright star forming regions. However, the far-infrared emission may be relatively weak compared with normal star-forming galaxies.Comment: 20 pages, 8 figures, accepted to Ap

    Impact of D0-D0bar mixing on the experimental determination of gamma

    Full text link
    Several methods have been devised to measure the weak phase gamma using decays of the type B+- --> D K+-, where it is assumed that there is no mixing in the D0-D0bar system. However, when using these methods to uncover new physics, one must entertain the real possibility that the measurements are affected by new physics effects in the D0-D0bar system. We show that even values of x_D and/or y_D around 10^{-2} can have a significant impact in the measurement of sin^2{gamma}. We discuss the errors incurred in neglecting this effect, how the effect can be checked, and how to include it in the analysis.Comment: 18 pages, Latex with epsfig, 8 figure

    Absolute physical calibration in the infrared

    Get PDF
    We determine an absolute calibration for the Multiband Imaging Photometer for Spitzer 24 μm band and recommend adjustments to the published calibrations for Two Micron All Sky Survey (2MASS), Infrared Array Camera (IRAC), and IRAS photometry to put them on the same scale. We show that consistent results are obtained by basing the calibration on either an average A0V star spectral energy distribution (SED), or by using the absolutely calibrated SED of the Sun in comparison with solar-type stellar photometry (the solar analog method). After the rejection of a small number of stars with anomalous SEDs (or bad measurements), upper limits of ~1.5% root mean square (rms) are placed on the intrinsic infrared (IR) SED variations in both A-dwarf and solar-type stars. These types of stars are therefore suitable as general-purpose standard stars in the IR. We provide absolutely calibrated SEDs for a standard zero magnitude A star and for the Sun to allow extending this work to any other IR photometric system. They allow the recommended calibration to be applied from 1 to 25 μm with an accuracy of ~2%, and with even higher accuracy at specific wavelengths such as 2.2, 10.6, and 24 μm, near which there are direct measurements. However, we confirm earlier indications that Vega does not behave as a typical A0V star between the visible and the IR, making it problematic as the defining star for photometric systems. The integration of measurements of the Sun with those of solar-type stars also provides an accurate estimate of the solar SED from 1 through 30 μm, which we show agrees with theoretical models

    Measurements of Lifetimes and a Limit on the Lifetime Difference in the Neutral D-Meson System

    Full text link
    Using the large hadroproduced charm sample collected in experiment E791 at Fermilab, we report the first directly measured constraint on the decay-width difference Delta Gamma for the mass eigenstates of the D0-D0bar system. We obtain our result from lifetime measurements of the decays D0 --> K-pi+ and D0 --> K-K+, under the assumption of CP invariance, which implies that the CP eigenstates and the mass eigenstates are the same. The lifetime of D0 --> K-K+ (the CP-even final state is \tau_KK = 0.410 +/- 0.011 +/- 0.006 ps, and the lifetime of D0 --> K-pi+ (an equal mixture of CP-odd and CP-even final states is tau_Kpi = 0.413 +/- 0.003 +/- 0.004 ps. The decay-width difference is Delta Gamma = 2(Gamma_KK - Gamma_Kpi) = 0.04 +/- 0.14 +/- 0.05 ps^-1. We relate these measurements to measurements of mixing in the neutral D-meson system.Comment: 8 pages + 3 figures + 2 table

    A Search for Dark Matter Annihilation with the Whipple 10m Telescope

    Get PDF
    We present observations of the dwarf galaxies Draco and Ursa Minor, the local group galaxies M32 and M33, and the globular cluster M15 conducted with the Whipple 10m gamma-ray telescope to search for the gamma-ray signature of self-annihilating weakly interacting massive particles (WIMPs) which may constitute astrophysical dark matter (DM). We review the motivations for selecting these sources based on their unique astrophysical environments and report the results of the data analysis which produced upper limits on excess rate of gamma rays for each source. We consider models for the DM distribution in each source based on the available observational constraints and discuss possible scenarios for the enhancement of the gamma-ray luminosity. Limits on the thermally averaged product of the total self-annihilation cross section and velocity of the WIMP, , are derived using conservative estimates for the magnitude of the astrophysical contribution to the gamma-ray flux. Although these limits do not constrain predictions from the currently favored theoretical models of supersymmetry (SUSY), future observations with VERITAS will probe a larger region of the WIMP parameter phase space, and WIMP particle mass (m_\chi).Comment: 33 pages, 12 figures, accepted for publication in the Astrophysical Journa

    Far Infrared Source Counts at 70 and 160 microns in Spitzer Deep Surveys

    Get PDF
    We derive galaxy source counts at 70 and 160 microns using the Multiband Imaging Photometer for Spitzer (MIPS) to map the Chandra Deep Field South (CDFS) and other fields. At 70 microns, our observations extend upwards about 2 orders of magnitude in flux density from a threshold of 15 mJy, and at 160 microns they extend about an order of magnitude upward from 50 mJy. The counts are consistent with previous observations on the bright end. Significant evolution is detected at the faint end of the counts in both bands, by factors of 2-3 over no-evolution models. This evolution agrees well with models that indicate most ofthe faint galaxies lie at redshifts between 0.7 and 0.9. The new Spitzer data already resolve about 23% of the Cosmic Far Infrared Background at 70 microns and about 7% at 160 microns.Comment: Small modifications to match printed version. Models in Differential Counts plots were changed. MIPS Source Counts are available at: http://lully.as.arizona.edu/GTODeep/Counts/ . Accepted for Publication in ApJS Special Issue on Spitze

    New Debris Disks Around Nearby Main Sequence Stars: Impact on The Direct Detection of Planets

    Get PDF
    Using the MIPS instrument on the Spitzer telescope, we have searched for infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence field stars, along with a small number of nearby M stars. These stars were selected for their suitability for future observations by a variety of planet-finding techniques. These observations provide information on the asteroidal and cometary material orbiting these stars - data that can be correlated with any planets that may eventually be found. We have found significant excess 70um emission toward 12 stars. Combined with an earlier study, we find an overall 70um excess detection rate of 13±313 \pm 3% for mature cool stars. Unlike the trend for planets to be found preferentially toward stars with high metallicity, the incidence of debris disks is uncorrelated with metallicity. By newly identifying 4 of these stars as having weak 24um excesses (fluxes \sim10% above the stellar photosphere), we confirm a trend found in earlier studies wherein a weak 24um excess is associated with a strong 70um excess. Interestingly, we find no evidence for debris disks around 23 stars cooler than K1, a result that is bolstered by a lack of excess around any of the 38 K1-M6 stars in 2 companion surveys. One motivation for this study is the fact that strong zodiacal emission can make it hard or impossible to detect planets directly with future observatories like the {\it Terrestrial Planet Finder (TPF)}. The observations reported here exclude a few stars with very high levels of emission, >>1,000 times the emission of our zodiacal cloud, from direct planet searches. For the remainder of the sample, we set relatively high limits on dust emission from asteroid belt counterparts

    Debris disks around Sun-like stars

    Full text link
    We have observed nearly 200 FGK stars at 24 and 70 microns with the Spitzer Space Telescope. We identify excess infrared emission, including a number of cases where the observed flux is more than 10 times brighter than the predicted photospheric flux, and interpret these signatures as evidence of debris disks in those systems. We combine this sample of FGK stars with similar published results to produce a sample of more than 350 main sequence AFGKM stars. The incidence of debris disks is 4.2% (+2.0/-1.1) at 24 microns for a sample of 213 Sun-like (FG) stars and 16.4% (+2.8/-2.9) at 70 microns for 225 Sun-like (FG) stars. We find that the excess rates for A, F, G, and K stars are statistically indistinguishable, but with a suggestion of decreasing excess rate toward the later spectral types; this may be an age effect. The lack of strong trend among FGK stars of comparable ages is surprising, given the factor of 50 change in stellar luminosity across this spectral range. We also find that the incidence of debris disks declines very slowly beyond ages of 1 billion years.Comment: ApJ, in pres
    corecore