48 research outputs found

    Operon Conservation and the Evolution of trans-Splicing in the Phylum Nematoda

    No full text
    The nematode Caenorhabditis elegans is unique among model animals in that many of its genes are cotranscribed as polycistronic pre-mRNAs from operons. The mechanism by which these operonic transcripts are resolved into mature mRNAs includes trans-splicing to a family of SL2-like spliced leader exons. SL2-like spliced leaders are distinct from SL1, the major spliced leader in C. elegans and other nematode species. We surveyed five additional nematode species, representing three of the five major clades of the phylum Nematoda, for the presence of operons and the use of trans-spliced leaders in resolution of polycistronic pre-mRNAs. Conserved operons were found in Pristionchus pacificus, Nippostrongylus brasiliensis, Strongyloides ratti, Brugia malayi, and Ascaris suum. In nematodes closely related to the rhabditine C. elegans, a related family of SL2-like spliced leaders is used for operonic transcript resolution. However, in the tylenchine S. ratti operonic transcripts are resolved using a family of spliced leaders related to SL1. Non-operonic genes in S. ratti may also receive these SL1 variants. In the spirurine nematodes B. malayi and A. suum operonic transcripts are resolved using SL1. Mapping these phenotypes onto the robust molecular phylogeny for the Nematoda suggests that operons evolved before SL2-like spliced leaders, which are an evolutionary invention of the rhabditine lineage

    The Wolbachia endosymbionts of filarial nematodes

    No full text
    Filarial nematodes harbour intracellular, Gram-negative bacteria belonging to the genus Wolbachia. These bacteria have been observed in various species of filariae, including the main filariasis agents of humans and animals. It has been suggested that Wolbachia could play an important role in the biology of filarial nematodes and could be implicated in the pathogenesis of filarial diseases. Wolbachia could thus represent a target for the control of filariasis and a key to the understanding of these diseases. Indeed, in various species of filariae, tetracycline treatments have been shown both to reduce/eliminate the Wolbachia population and to determine detrimental effects on the nematodes. In addition, proteins of Wolbachia have been shown to determine specific IgG responses in animals infected by filariae and some Wolbachia molecules (e.g. LPS) have been shown to stimulate innate-immunity responses (e.g. production of cytokines such as IL1, IL6, IL10, TNF-\u3b1 and IFN-\u3b3 by macrophages)

    Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes

    No full text
    Background Comparisons between the genomes of the closely related nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal high rates of rearrangement, with a bias towards within-chromosome events. To assess whether this pattern is true of nematodes in general, we have used genome sequence to compare two nematode species that last shared a common ancestor approximately 300 million years ago: the model C. elegans and the filarial parasite Brugia malayi. Results An 83 kb region flanking the gene for Bm-mif-1 (macrophage migration inhibitory factor, a B. malayi homolog of a human cytokine) was sequenced. When compared to the complete genome of C. elegans, evidence for conservation of long-range synteny and microsynteny was found. Potential C. elegans orthologs for II of the 12 protein-coding genes predicted in the B. malayi sequence were identified. Ten of these orthologs were located on chromosome I, with eight clustered in a 2.3 Mb region. While several, relatively local, intrachromosomal rearrangements have occurred, the order, composition, and configuration of two gene clusters, each containing three genes, was conserved. Comparison of B. malayi BAC-end genome survey sequence to C. elegans also revealed a bias towards intrachromosome rearrangements. Conclusions We suggest that intrachromosomal rearrangement is a major force driving chromosomal organization in nematodes, but is constrained by the interdigitation of functional elements of neighboring genes

    A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling

    No full text
    Cysteine proteinases are involved in a variety of important biological processes and have been implicated in molting and tissue remodeling in free living and parasitic nematodes. We show that in the lymphatic filarial nematode Brugia pahangi molting of third-stage larvae (L3) to fourth-stage larvae is dependent on the activity of a cathepsin L-like cysteine protease (CPL), which can be detected in the excretory/secretory (ES) products of molting L3. Directed cloning of a cysteine protease gene in B. pahangi and analysis of the expressed sequence tag (EST) and genomic sequences of the closely related human lymphatic filarial nematode Brugia malayi have identified a family of CPLs. One group of these enzymes, Bm-cpl-1, -4, -5 and Bp-cpl-4, is highly expressed in the B. malayi and B. pahangi infective L3 larvae. Immunolocalization indicates that the corresponding enzymes are synthesized and stored in granules of the glandular esophagus of L3 and released during the molting process. Functional analysis of these genes in Brugia and closely related CPL genes identified in the filarial nematode Onchocerca volvulus and the free living model nematode Caenorhabditis elegans indicate that these genes are also involved in cuticle and eggshell remodeling
    corecore