10 research outputs found

    Three-dimensional Ising model confined in low-porosity aerogels: a Monte Carlo study

    Full text link
    The influence of correlated impurities on the critical behaviour of the 3D Ising model is studied using Monte Carlo simulations. Spins are confined into the pores of simulated aerogels (diffusion limited cluster-cluster aggregation) in order to study the effect of quenched disorder on the critical behaviour of this magnetic system. Finite size scaling is used to estimate critical couplings and exponents. Long-range correlated disorder does not affect critical behavior. Asymptotic exponents differ from those of the pure 3D Ising model (3DIS), but it is impossible, with our precision, to distinguish them from the randomly diluted Ising model (RDIS).Comment: 10 pages, 10 figures. Submitted to Physical Review

    Weak quenched disorder and criticality: resummation of asymptotic(?) series

    Full text link
    In these lectures, we discuss the influence of weak quenched disorder on the critical behavior in condensed matter and give a brief review of available experimental and theoretical results as well as results of MC simulations of these phenomena. We concentrate on three cases: (i) uncorrelated random-site disorder, (ii) long-range-correlated random-site disorder, and (iii) random anisotropy. Today, the standard analytical description of critical behavior is given by renormalization group results refined by resummation of the perturbation theory series. The convergence properties of the series are unknown for most disordered models. The main object of these lectures is to discuss the peculiarities of the application of resummation techniques to perturbation theory series of disordered models.Comment: Lectures given at the Second International Pamporovo Workshop on Cooperative Phenomena in Condensed Matter (28th July - 7th August 2001, Pamporovo, Bulgaria). 51 pages, 12 figures, 1 style files include

    Critical dynamics and effective exponents of magnets with extended impurities

    Full text link
    We investigate the asymptotic and effective static and dynamic critical behavior of (d=3)-dimensional magnets with quenched extended defects, correlated in Ï”d\epsilon_d dimensions (which can be considered as the dimensionality of the defects) and randomly distributed in the remaining d−ϔdd-\epsilon_d dimensions. The field-theoretical renormalization group perturbative expansions being evaluated naively do not allow for the reliable numerical data. We apply the Chisholm-Borel resummation technique to restore convergence of the two-loop expansions and report the numerical values of the asymptotic critical exponents for the model A dynamics. We discuss different scenarios for static and dynamic effective critical behavior and give values for corresponding non-universal exponents.Comment: 12 pages, 6 figure

    Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster

    Full text link
    The scaling properties of self-avoiding walks on a d-dimensional diluted lattice at the percolation threshold are analyzed by a field-theoretical renormalization group approach. To this end we reconsider the model of Y. Meir and A. B. Harris (Phys. Rev. Lett. 63:2819 (1989)) and argue that via renormalization its multifractal properties are directly accessible. While the former first order perturbation did not agree with the results of other methods, we find that the asymptotic behavior of a self-avoiding walk on the percolation cluster is governed by the exponent nu_p=1/2 + epsilon/42 + 110epsilon^2/21^3, epsilon=6-d. This analytic result gives an accurate numeric description of the available MC and exact enumeration data in a wide range of dimensions 2<=d<=6.Comment: 4 pages, 2 figure

    Critical behavior of magnetic systems with extended impurities in general dimensions

    Full text link
    We investigate the critical properties of d-dimensional magnetic systems with quenched extended defects, correlated in Ï”d\epsilon_d dimensions (which can be considered as the dimensionality of the defects) and randomly distributed in the remaining d−ϔdd-\epsilon_d dimensions; both in the case of fixed dimension d=3 and when the space dimension continuously changes from the lower critical dimension to the upper one. The renormalization group calculations are performed in the minimal subtraction scheme. We analyze the two-loop renormalization group functions for different fixed values of the parameters d,Ï”dd, \epsilon_d. To this end, we apply the Chisholm-Borel resummation technique and report the numerical values of the critical exponents for the universality class of this system.Comment: 8 figures. To appear in Phys. Rev.

    Polymers in long-range-correlated disorder

    Full text link
    We study the scaling properties of polymers in a d-dimensional medium with quenched defects that have power law correlations ~r^{-a} for large separations r. This type of disorder is known to be relevant for magnetic phase transitions. We find strong evidence that this is true also for the polymer case. Applying the field-theoretical renormalization group approach we perform calculations both in a double expansion in epsilon=4-d and delta=4-a up to the 1-loop order and secondly in a fixed dimension (d=3) approach up to the 2-loop approximation for different fixed values of the correlation parameter, 2=<a=<3. In the latter case the numerical results need appropriate resummation. We find that the asymptotic behavior of self-avoiding walks in three dimensions and long-range-correlated disorder is governed by a set of separate exponents. In particular, we give estimates for the 'nu' and 'gamma' exponents as well as for the correction-to-scaling exponent 'omega'. The latter exponent is also calculated for the general m-vector model with m=1,2,3.Comment: 13 pages, 5 figure

    Network Harness: Metropolis Public Transport

    Get PDF
    We analyze the public transport networks (PTNs) of a number of major cities of the world. While the primary network topology is defined by a set of routes each servicing an ordered series of given stations, a number of different neighborhood relations may be defined both for the routes and the stations. The networks defined in this way display distinguishing properties, the most striking being that often several routes proceed in parallel for a sequence of stations. Other networks with real-world links like cables or neurons embedded in two or three dimensions often show the same feature - we use the car engineering term "harness" for such networks. Geographical data for the routes reveal surprising self-avoiding walk (SAW) properties. We propose and simulate an evolutionary model of PTNs based on effectively interacting SAWs that reproduces the key features.Comment: 5 pages, 4 figure

    Entropy-induced separation of star polymers in porous media

    Full text link
    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of ff-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)∌r−ag(r) \sim r^{-a}. Applying the field-theoretical renormalization group approach we show in a double expansion in Ï”=4−d\epsilon=4-d and ÎŽ=4−a\delta=4-a that there is a range of correlation strengths ÎŽ\delta for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3d=3 and different values of the correlation parameter aa the corresponding scaling exponents Îłf\gamma_f that govern entropic effects. We find that Îłf−1\gamma_f-1, the deviation of Îłf\gamma_f from its mean field value is amplified by the disorder once we increase ÎŽ\delta beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are: star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers.Comment: 14 pages, 7 figure

    The three-dimensional randomly dilute Ising model: Monte Carlo results

    Get PDF
    We perform a high-statistics simulation of the three-dimensional randomly dilute Ising model on cubic lattices L3L^3 with L≀256L\le 256. We choose a particular value of the density, x=0.8, for which the leading scaling corrections are suppressed. We determine the critical exponents, obtaining Îœ=0.683(3)\nu = 0.683(3), η=0.035(2)\eta = 0.035(2), ÎČ=0.3535(17)\beta = 0.3535(17), and α=−0.049(9)\alpha = -0.049(9), in agreement with previous numerical simulations. We also estimate numerically the fixed-point values of the four-point zero-momentum couplings that are used in field-theoretical fixed-dimension studies. Although these results somewhat differ from those obtained using perturbative field theory, the field-theoretical estimates of the critical exponents do not change significantly if the Monte Carlo result for the fixed point is used. Finally, we determine the six-point zero-momentum couplings, relevant for the small-magnetization expansion of the equation of state, and the invariant amplitude ratio RΟ+R^+_\xi that expresses the universality of the free-energy density per correlation volume. We find RΟ+=0.2885(15)R^+_\xi = 0.2885(15).Comment: 34 pages, 7 figs, few correction
    corecore