8 research outputs found

    Alignment-insensitive coupling for PLC-based surface mount photonics

    Get PDF
    A flip-chip waveguide coupler with an order of magnitude greater alignment tolerance than competing approaches is presented for the first time. Experimental data for an "optical jumper" agree with simple design considerations. Application to a planar lightwave circuit-based surface mount photonics platform is outlined

    OH absorption in on-chip high-Q resonators

    Full text link
    Thermal silica is a common dielectric used in all silicon-photonic circuits. And bound hydroxyl ions (Si-OH) can provide a significant component of optical loss in this material on account of the wet nature of the thermal oxidation process. A convenient way to quantify this loss relative to other mechanisms is through OH-absorption at 1380 nm. Here, using ultra-high-Q thermal-silica wedge microresonators, the OH absorption loss peak is measured and distinguished from the scattering loss base line over a wavelength range from 680 nm to 1550 nm. Record-high on-chip resonator Q factors are observed for near-visible and visible wavelengths, and the absorption limited Q factor is as high as 8 billion in the telecom band. OH ion content level around 2.4 ppm (weight) is inferred from both Q measurements and by Secondary Ion Mass Spectroscopy (SIMS) depth profiling.Comment: 4 pages, 3 figure

    Lichen planus remission is associated with a decrease of human herpes virus type 7 protein expression in plasmacytoid dendritic cells

    Get PDF
    The cause of lichen planus is still unknown. Previously we showed human herpes virus 7 (HHV-7) DNA and proteins in lesional lichen planus skin, and significantly less in non-lesional lichen planus, psoriasis or healthy skin. Remarkably, lesional lichen planus skin was infiltrated with plasmacytoid dendritic cells. If HHV-7 is associated with lichen planus, then HHV-7 replication would reduce upon lichen planus remission. HHV-7 DNA detection was performed by nested PCR and HHV-7 protein by immunohistochemistry on lesional skin biopsies from lichen planus patients before treatment and after remission. Biopsies were obtained from lichen planus lesions before treatment (n = 18 patients) and after remission (n = 13). Before treatment 61% biopsies contained HHV-7 DNA versus 8% after remission (P = 0.01). HHV-7-protein positive cell numbers diminished significantly after remission in both dermis and epidermis. Expression of HHV-7 was mainly detected in BDCA-2 positive plasmacytoid dendritic cells rather than CD-3 positive lymphocytes. HHV-7 replicates in plasmacytoid dendritic cells in lesional lichen planus skin and diminishes after remission. This study further supports our hypothesis that HHV-7 is associated with lichen planus pathogenesis

    New Structures for AlGaAs Lasers and Avalanche Photodetectors

    Get PDF
    This thesis describes the fabrication and the properties of five new semiconductor laser diode structures. All of these devices were grown from the GaAs-AlGaAs ternary system using the liquid phase epitaxial technique. In addition, a new low noise avalanche photodetector is proposed. The first example is a new technique for fabricating cleaved mirrors without cleaving through the substrate. This technique, called micro-cleavage, has potential applications for both opto-electronic integrated circuits and for the fabrication of short cavity length lasers. In this technique, cantilevers are formed by a sequence of etching steps. These cantilevers are subsequently cleaved using ultrasonic vibrations. Three devices related to high power single mode lasers are described. The first of these is the large optical cavity buried heterostructure window laser. The output power of semiconductor lasers, particularly during pulsed operation is limited by catastrophic mirror damage which occurs at power densities above a pulse width dependent damage threshold. The damage occurs due to local heating up to the melting point of the active region in the vicinity of the cleaved mirror facets. However, catastrophic mirror damage can be avoided by isolating the active layer from the cleaved mirrors, as is done in these window lasers. The second device related to high power that is described is the Inverted Strip Buried Heterostructure laser. These lasers combine many of the best features of both the buried optical guide lasers and the strip buried heterostructure that have been previously developed elsewhere. The inverted strip buried heterostructure lasers have significantly better beam quality than buried optical guide lasers and can be operated in the fundamental spatial mode for larger emitting areas (and therefore greater output power). The third device related to high power lasers is a variation of a buried heterostructure laser in which the injected current is confined to a narrow section in the center of the active layer. The optical gain is therefore also confined to a narrow section in the center of the active layer. By doing so the fundamental mode is much better matched to the optical gain than the higher order spatial modes. The result is that fundamental mode operation is possible for buried heterostructure lasers with active layer widths up to 8 µm. When the current is injected uniformly into the active layer, fundamental mode operation is possible only for active layer widths less than 2 µm. In addition to the descriptions of these devices a theoretical chapter on high power single mode lasers is included. The final laser structure that is described is a single liquid phase epitaxial growth laser structure in which the current is restricted to flow between two narrow stripes located above and below the active layer. This structure, which is fabricated using a meltback-growth technique allows the current injection to be restricted to a very narrow section of the active layer, which results in several interesting properties which are described and explained using a simple model. The final subject of this thesis is a multilayer avalanche photodetector (APD) which has been proposed for low noise applications. The noise generated by an APD is dependent on the statistics of the carrier multiplication process, since positive feedback effects, which exist when both electrons and holes produce secondary pairs, can greatly amplify any current fluctuations. Significantly more noise is generated if the electron and hole ionization rates (α, β) are equal than if only one carrier produces secondary pairs. The multilayer structure described and analyzed in this chapter is expected to have impact ionization which is dominated by electrons and therefore would be of importance for low noise applications.</p

    Immunobiology of T Cells in Sjögren’s Syndrome

    No full text
    corecore