4,014 research outputs found

    N=(4,4) Type IIA String Theory on PP-Wave Background

    Get PDF
    We construct IIA GS superstring action on the ten-dimensional pp-wave background, which arises as the compactification of eleven-dimensional pp-wave geometry along the isometry direction. The background geometry has 24 Killing spinors and among them, 16 components correspond to the non-linearly realized kinematical supersymmetry in the string action. The remaining eight components are linearly realized and shown to be independent of x^+ coordinate, which is identified with the world-sheet time coordinate of the string action in the light-cone gauge. The resultant dynamical N=(4,4) supersymmetry is investigated, which is shown to be consistent with the field contents of the action containing two free massive supermultiplets.Comment: latex, 15 pages; v2: typos corrected, polished, references adde

    Possible types of the evolution of vacuum shells around the de Sitter space

    Full text link
    All possible evolution scenarios of a thin vacuum shell surrounding the spherically symmetric de Sitter space have been determined and the corresponding global geometries have been constructed. Such configurations can appear at the final stage of the cosmological phase transition, when isolated regions (islands) of the old vacuum remain. The islands of the old vacuum are absorbed by the new vacuum, expand unlimitedly, or form black holes and wormholes depending on the sizes of the islands as well as on the density and velocity of the shells surrounding the islands.Comment: 3 pages, 1 figur

    Kaigorodov spaces and their Penrose limits

    Get PDF
    Kaigorodov spaces arise, after spherical compactification, as near horizon limits of M2, M5, and D3-branes with a particular pp-wave propagating in a world volume direction. We show that the uncompactified near horizon configurations K\times S are solutions of D=11 or D=10 IIB supergravity which correspond to perturbed versions of their AdS \times S analogues. We derive the Penrose-Gueven limits of the Kaigorodov space and the total spaces and analyse their symmetries. An Inonu-Wigner contraction of the Lie algebra is shown to occur, although there is a symmetry enhancement. We compare the results to the maximally supersymmetric CW spaces found as limits of AdS\times S spacetimes: the initial gravitational perturbation on the brane and its near horizon geometry remains after taking non-trivial Penrose limits, but seems to decouple. One particuliar limit yields a time-dependent homogeneous plane-wave background whose string theory is solvable, while in the other cases we find inhomogeneous backgrounds.Comment: latex2e, 24 page

    On d=4,5,6 Vacua with 8 Supercharges

    Get PDF
    We show how all known N=2, d=4,5,6 maximally supersymmetric vacua (Hpp-waves and aDSxS solutions) are related through dimensional reduction/oxidation preserving all the unbroken supersymmetries. In particular we show how the N=2, d=5 family of vacua (which are the near-horizon geometry of supersymmetric rotating black holes) interpolates between aDS_2xS^3 and aDS_3xS^2 in parameter space and how it can be dimensionally reduced to an N=2, d=4 dyonic Robinson-Bertotti solution with geometry aDS_2xS^2 and oxidized to an N=2, d=6 solution with aDS_3xS^3 geometry (which is the near-horizon of the self-dual string).Comment: Latex2e, 19 pages, 1 figure. v2: typos corrected, refs. added. v3: very minor corrections, more refs. added, version to be published in Classical and Quantum Gravit

    Penrose Limits, the Colliding Plane Wave Problem and the Classical String Backgrounds

    Full text link
    We show how the Szekeres form of the line element is naturally adapted to study Penrose limits in classical string backgrounds. Relating the "old" colliding wave problem to the Penrose limiting procedure as employed in string theory we discuss how two orthogonal Penrose limits uniquely determine the underlying target space when certain symmetry is imposed. We construct a conformally deformed background with two distinct, yet exactly solvable in terms of the string theory on R-R backgrounds, Penrose limits. Exploiting further the similarities between the two problems we find that the Penrose limit of the gauged WZW Nappi-Witten universe is itself a gauged WZW plane wave solution of Sfetsos and Tseytlin. Finally, we discuss some issues related to singularity, show the existence of a large class of non-Hausdorff solutions with Killing Cauchy Horizons and indicate a possible resolution of the problem of the definition of quantum vacuum in string theory on these time-dependent backgrounds.Comment: Some misprints corrected. Matches the version in print. To appear in Classical & Quantum Gravit

    Penrose Limits, PP-Waves and Deformed M2-branes

    Get PDF
    Motivated by the recent discussions of the Penrose limit of AdS_5\times S^5, we examine a more general class of supersymmetric pp-wave solutions of the type IIB theory, with a larger number of non-vanishing structures in the self-dual 5-form. One of the pp-wave solutions can be obtained as a Penrose limit of a D3/D3 intersection. In addition to 16 standard supersymmetries these backgrounds always allow for supernumerary supersymmetries. The latter are in one-to-one correspondence with the linearly-realised world-sheet supersymmetries of the corresponding exactly-solvable type IIB string action. The pp-waves provide new examples where supersymmetries will survive in a T-duality transformation on the x^+ coordinate. The T-dual solutions can be lifted to give supersymmetric deformed M2-branes in D=11. The deformed M2-brane is dual to a three-dimensional field theory whose renormalisation group flow runs from the conformal fixed point in the infra-red regime to a non-conformal theory as the energy increases. At a certain intermediate energy scale there is a phase transition associated with a naked singularity of the M2-brane. In the ultra-violet limit the theory is related by T-duality to an exactly-solvable massive IIB string theory.Comment: Latex, 23 pages. Typographical errors corrected, and references adde

    A Comment on Masses, Quantum Affine Symmetries and PP-Wave Backgrounds

    Get PDF
    Two dimensional light cone world sheet massive models can be used to define good string backgrounds.In many cases these light cone world sheet lagrangians flow from a CFT in the UV to a theory of massive particles in the IR. The relevant symmetry in the IR, playing a similar role to Virasoro in the UV, are quantum affine Kac Moody algebras. Finite dimensional irreps of this algebra are associated with the spectrum of massive particles. The case of N=0 Sine Gordon at the N=2 point is associated with a Landau Ginzburg model that defines a good string background. For the world sheet symmetry (N=2)⊗Uq(Sl(2)^)(N=2) \otimes U_{q}(\hat{Sl(2)}) the N=2 piece is associated with the string conformal invariance and the Uq(Sl(2)^)U_{q}(\hat{Sl(2)}) piece with the world sheet RG. The two dimensional light cone world sheet massive model can be promoted to a CFT by adding extra light cone fields X−X^{-} and X+X^{+}. From the point of view of the quantum affine symmetry these two fields are associated, respectively, with the center and the derivation of the affine Kac Moody algebra.Comment: 9 pages. Typos correcte

    Modelling the dynamics of global monopoles

    Get PDF
    A thin wall approximation is exploited to describe a global monopole coupled to gravity. The core is modelled by de Sitter space; its boundary by a thin wall with a constant energy density; its exterior by the asymptotic Schwarzschild solution with negative gravitational mass MM and solid angle deficit, ΔΩ/4π=8πGη2\Delta\Omega/4\pi = 8\pi G\eta^2, where η\eta is the symmetry breaking scale. The deficit angle equals 4π4\pi when η=1/8πG≡Mp\eta=1/\sqrt{8\pi G} \equiv M_p. We find that: (1) if η<Mp\eta <M_p, there exists a unique globally static non-singular solution with a well defined mass, M0<0M_0<0. M0M_0 provides a lower bound on MM. If M0<M<0M_0<M<0, the solution oscillates. There are no inflating solutions in this symmetry breaking regime. (2) if η≄Mp\eta \ge M_p, non-singular solutions with an inflating core and an asymptotically cosmological exterior will exist for all M<0M<0. (3) if η\eta is not too large, there exists a finite range of values of MM where a non-inflating monopole will also exist. These solutions appear to be metastable towards inflation. If MM is positive all solutions are singular. We provide a detailed description of the configuration space of the model for each point in the space of parameters, (η,M)(\eta, M) and trace the wall trajectories on both the interior and the exterior spacetimes. Our results support the proposal that topological defects can undergo inflation.Comment: 44 pages, REVTeX, 11 PostScript figures, submitted to the Physical Review D. Abstract's correcte

    Berezin Quantization of Gauged WZW and Coset Models

    Full text link
    Gauged WZW and coset models are known to be useful to prove holomorphic factorization of the partition function of WZW and coset models. In this note we show that these gauged models can be also important to quantize the theory in the context of the Berezin formalism. For gauged coset models Berezin quantization procedure also admits a further holomorphic factorization in the complex structure of the moduli space.Comment: 15+1 pages, no figures, revte

    Power-law singularities in string theory and M-theory

    Full text link
    We extend the definition of the Szekeres-Iyer power-law singularities to supergravity, string and M-theory backgrounds, and find that are characterized by Kasner type exponents. The near singularity geometries of brane and some intersecting brane backgrounds are investigated and the exponents are computed. The Penrose limits of some of these power-law singularities have profiles A∌u−γA\sim {\rm u}^{-\gamma} for γ≄2\gamma\geq 2. We find the range of the exponents for which Îł=2\gamma=2 and the frequency squares are bounded by 1/4. We propose some qualitative tests for deciding whether a null or timelike spacetime singularity can be resolved within string theory and M-theory based on the near singularity geometry and its Penrose limits.Comment: 32 page
    • 

    corecore