77 research outputs found

    Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells

    Get PDF
    BACKGROUND: Several small receptor tyrosine kinase inhibitors (RTKI) have entered clinical cancer trials alone and in combination with radiotherapy or chemotherapy. The inhibitory spectrum of these compounds is often not restricted to a single target. For example Imatinib/Gleevec (primarily a bcr/abl kinase inhibitor) or SU11248 (mainly a VEGFR inhibitor) are also potent inhibitors of PDGFR and other kinases. We showed previously that PDGF signaling inhibition attenuates radiation-induced lung fibrosis in a mouse model. Here we investigate effects of SU9518, a PDGFR inhibitor combined with ionizing radiation in human primary fibroblasts and endothelial cells in vitro, with a view on utilizing RTKI for antifibrotic therapy. METHODS: Protein levels of PDGFR-α/-β and phosphorylated PDGFR in fibroblasts were analyzed using western and immunocytochemistry assays. Functional proliferation and clonogenic assays were performed (i) to assess PDGFR-mediated survival and proliferation in fibroblasts and endothelial cells after SU9518 (small molecule inhibitor of PDGF receptor tyrosine kinase); (ii) to test the potency und selectivity of the PDGF RTK inhibitor after stimulation with PDGF isoforms (-AB, -AA, -BB) and VEGF+bFGF. In order to simulate in vivo conditions and to understand the role of radiation-induced paracrine PDGF secretion, co-culture models consisting of fibroblasts and endothelial cells were employed. RESULTS: In fibroblasts, radiation markedly activated PDGF signaling as detected by enhanced PDGFR phosphorylation which was potently inhibited by SU9518. In fibroblast clonogenic assay, SU9518 reduced PDGF stimulated fibroblast survival by 57%. Likewise, SU9518 potently inhibited fibroblast and endothelial cell proliferation. In the co-culture model, radiation of endothelial cells and fibroblast cells substantially stimulated proliferation of non irradiated fibroblasts and vice versa. Importantly, the RTK inhibitor significantly inhibited this paracrine radiation-induced fibroblast and endothelial cell activation. CONCLUSION: Radiation-induced autocrine and paracrine PDGF signaling plays an important role in fibroblast and endothelial cell proliferation. SU9518, a PDGFR tyrosine kinase inhibitor, reduces radiation-induced fibroblast and endothelial cell activation. This may explain therapeutic anticancer effects of Imatinib/Gleevec, and at the same time it could open a way of attenuating radiation-induced fibrosis

    The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    Get PDF
    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues

    Experimental evidence for clothianidin deposition in feathers of house sparrows after ingestion of sublethal doses treated seeds.

    No full text
    Bird feathers are commonly used to assess environmental contamination by chemical pollutants. However, although neonicotinoid insecticides are widely applied worldwide, feathers have rarely been used to survey the contamination by neonicotinoids in birds. To investigate whether clothianidin, one compound of the neonicotinoid class, is deposited into birds' feathers, we conducted an experiment with 56 wild male and female house sparrows dispatched in 7 aviaries. During this experiment, house sparrows were fed with certified organic seeds treated with clothianidin at an estimated concentration of 0.25 μg/g BW per day and per individual. We collected blood samples and plucked four tail feathers at the onset of the experiment to confirm that no birds were previously exposed to clothianidin. 35 days later, we collected blood samples and the newly grown feathers. Before exposure, a small number of birds showed very low clothianidin concentrations in plasma and feathers. After exposure, the plasma and the newly grown feathers of all birds contained clothianidin. Clothianidin concentrations in feathers were similar in both sexes, but the plasma of males contained clothianidin at higher concentrations than that of females. Our results confirm that ingested clothianidin transits in the plasma and is deposited in feathers during their growth. They also suggest substantial individual variation in the amounts of clothianidin transiting in the plasma and being deposited in feathers that may reflect variation in metabolism and/or access to food in relation to sex, social hierarchy and group dynamics. Whether increasing levels of exposure translate linearly or non-linearly (e.g. saturation process) into increasing clothianidin concentrations in bird plasma and feathers remains to be investigated. To conclude, these results confirm the relevance of using feathers to biomonitor the presence of neonicotinoids, but the relationship between the level of exposure and the concentrations found in feathers remains to be established
    corecore