1,285 research outputs found
Decoupling Transition I. Flux Lattices in Pure Layered Superconductors
We study the decoupling transition of flux lattices in a layered
superconductors at which the Josephson coupling J is renormalized to zero. We
identify the order parameter and related correlations; the latter are shown to
decay as a power law in the decoupled phase. Within 2nd order renormalization
group we find that the transition is always continuous, in contrast with
results of the self consistent harmonic approximation. The critical temperature
for weak J is ~1/B, where B is the magnetic field, while for strong J it
is~1/sqrt{B} and is strongly enhanced. We show that renormaliztion group can be
used to evaluate the Josephson plasma frequency and find that for weak J it
is~1/BT^2 in the decoupled phase.Comment: 14 pages, 5 figures. New sections III, V. Companion to following
article on "Decoupling and Depinning II: Flux lattices in disordered layered
superconductors
Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice
We study the nonequilibrium steady state of the driven-dissipative
Bose-Hubbard model with Kerr nonlinearity. Employing a mean-field decoupling
for the intercavity hopping , we find that the steep crossover between low
and high photon-density states inherited from the single cavity transforms into
a gasliquid bistability at large cavity-coupling . We formulate a van der
Waals like gasliquid phenomenology for this nonequilibrium situation and
determine the relevant phase diagrams, including a new type of diagram where a
lobe-shaped boundary separates smooth crossovers from sharp, hysteretic
transitions. Calculating quantum trajectories for a one-dimensional system, we
provide insights into the microscopic origin of the bistability.Comment: 5 pages, 4 figures + Supplemental Material (2 pages, 2 figures
Density functional theory of vortex lattice melting in layered superconductors: a mean-field--substrate approach
We study the melting of the pancake vortex lattice in a layered
superconductor in the limit of vanishing Josephson coupling. Our approach
combines the methodology of a recently proposed mean-field substrate model for
such systems with the classical density functional theory of freezing. We
derive a free-energy functional in terms of a scalar order-parameter profile
and use it to derive a simple formula describing the temperature dependence of
the melting field. Our theoretical predictions are in good agreement with
simulation data. The theoretical framework proposed is thermodynamically
consistent and thus capable of describing the negative magnetization jump
obtained in experiments. Such consistency is demonstrated by showing the
equivalence of our expression for the density discontinuity at the transition
with the corresponding Clausius-Clapeyron relation.Comment: 11 pages, 4 figure
Superconducting Plate in Transverse Magnetic Field: New State
A model to describe Cooper pairs near the transition point (on temperature
and magnetic field), when the distance between them is big compared to their
sizes, is proposed. A superconducting plate whose thickness is less than the
pair size in the transverse magnetic field near the critical value is
considered as an application of the model. A new state that is energetically
more favourable than that of Abrikosov vortex state within an interval near the
transition point was obtained. The system's wave function in this state looks
like that of Laughlin's having been used in fractional quantum Hall effect
(naturally, in our case - for Cooper pairs as Bose-particles) and it
corresponds to homogeneous incompressible liquid. The state energy is
proportional to the first power of value , unlike the vortex
state energy having this value squared. The interval of the new state existence
is greater for dirty specimens.Comment: 7 page
The Amplitude Mode in the Quantum Phase Model
We derive the collective low energy excitations of the quantum phase model of
interacting lattice bosons within the superfluid state using a dynamical
variational approach. We recover the well known sound (or Goldstone) mode and
derive a gapped (Higgs type) mode that was overlooked in previous studies of
the quantum phase model. This mode is relevant to ultracold atoms in a strong
optical lattice potential. We predict the signature of the gapped mode in
lattice modulation experiments and show how it evolves with increasing
interaction strength.Comment: 4 pages, 3 figure
Thermal Suppression of Strong Pinning
We study vortex pinning in layered type-II superconductors in the presence of
uncorrelated disorder for decoupled layers. Introducing the new concept of
variable-range thermal smoothing, we describe the interplay between strong
pinning and thermal fluctuations. We discuss the appearance and analyze the
evolution in temperature of two distinct non-linear features in the
current-voltage characteristics. We show how the combination of layering and
electromagnetic interactions leads to a sharp jump in the critical current for
the onset of glassy response as a function of temperature.Comment: LaTeX 2.09, 4 pages, 2 figures, submitted to Phys. Rev. Let
Non-equilibrium dynamics of coupled qubit-cavity arrays
We study the coherence and fluorescence properties of the coherently pumped
and dissipative Jaynes-Cummings-Hubbard model describing polaritons in a
coupled-cavity array. At weak hopping we find strong signatures of photon
blockade similar to single-cavity systems. At strong hopping the state of the
photons in the array depends on its size. While the photon blockade persists in
a dimer consisting of two coupled cavities, a coherent state forms on an
extended lattice, which can be described in terms of a semi-classical model
- …