1,396 research outputs found

    Vortex Entanglement and Broken Symmetry

    Full text link
    Based on the London approximation, we investigate numerically the stability of the elementary configurations of entanglement, the twisted-pair and the twisted-triplet, in the vortex-lattice and -liquid phases. We find that, except for the dilute limit, the twisted-pair is unstable and hence irrelevant in the discussion of entanglement. In the lattice phase the twisted-triplet constitutes a metastable, confined configuration of high energy. Loss of lattice symmetry upon melting leads to deconfinement and the twisted-triplet turns into a low-energy helical configuration.Comment: 4 pages, RevTex, 2 figures on reques

    Characteristics of First-Order Vortex Lattice Melting: Jumps in Entropy and Magnetization

    Full text link
    We derive expressions for the jumps in entropy and magnetization characterizing the first-order melting transition of a flux line lattice. In our analysis we account for the temperature dependence of the Landau parameters and make use of the proper shape of the melting line as determined by the relative importance of electromagnetic and Josephson interactions. The results agree well with experiments on anisotropic Y1_1Ba2_2Cu3_3O7δ_{7-\delta} and layered Bi2_2Sr2_2Ca1_1Cu2_2O8_8 materials and reaffirm the validity of the London model.Comment: 4 pages. We have restructured the paper to emphasize that in the London scaling regime (appropriate for YBCO) our results are essentially exact. We have also emphasized that a major controversy over the relevance of the London model to describe VL melting has been settled by this wor

    Weak- to strong pinning crossover

    Full text link
    Material defects in hard type II superconductors pin the flux lines and thus establish the dissipation-free current transport in the presence of a finite magnetic field. Depending on the density and pinning force of the defects and the vortex density, pinning is either weak-collective or strong. We analyze the weak- to strong pinning crossover of vortex matter in disordered superconductors and discuss the peak effect appearing naturally in this context.Comment: 4 pages, 2 figure

    About the origin of European spelt ( Triticum spelta L.): allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes

    Get PDF
    To investigate the origin of European spelt (Triticum spelta L., genome AABBDD) and its relation to bread wheat (Triticum aestivum L., AABBDD), we analysed an approximately 1-kb sequence, including a part of the promoter and the coding region, of the high-molecular-weight (HMW) glutenin B1-1 and A1-2 subunit genes in 58 accessions of hexa- and tetraploid wheat from different geographical regions. Six Glu-B1-1 and five Glu-A1-2 alleles were identified based on 21 and 19 informative sites, respectively, which suggests a polyphyletic origin of the A- and B-genomes of hexaploid wheat. In both genes, a group of alleles clustered in a distinct, so-called beta subclade. High frequencies of alleles from the Glu-B1-1 and Glu-A1-2 beta subclades differentiated European spelt from Asian spelt and bread wheat. This indicates different origins of European and Asian spelt, and that European spelt does not derive from the hulled progenitors of bread wheat. The conjoint differentiation of alleles of the A- and B-genome in European spelt suggests the introgression of a tetraploid wheat into free-threshing hexaploid wheat as the origin of European spel

    Scaling of the microwave magneto-impedance in Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films

    Full text link
    We present measurements of the magnetic field-induced microwave complex resistivity changes at 47 GHz in Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} (TBCCO) thin films, in the ranges 58 K<T<Tc<T<T_{c} and 0<μ0H<<\mu_{0}H<0.8 T. The large imaginary part Δρ2(H)\Delta\rho_{2}(H) points to strong elastic response, but the data are not easily reconciled with a rigid vortex model. We find that, over a wide range of temperatures, all the pairs of curves Δρ1(H)\Delta\rho_{1}(H) and Δρ2(H)\Delta\rho_{2}(H) can be collapsed on a pair of scaling curves Δρ1[H/H(T)]\Delta\rho_{1}[H/H^{*}(T)], Δρ2[H/H(T)]\Delta\rho_{2}[H/H^{*}(T)], with the same scaling field H(T)H^{*}(T). We argue that H(T)H^{*}(T) is related to the loss of vortex rigidity due to a vortex transformation.Comment: Two printed pages, Proceedings of M2S (Dresden, 2006), to appear in Physica
    corecore