24 research outputs found
Recommended from our members
Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P
Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicinsensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP) in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.This work was supported by the Alexander von Humboldt Foundation (EStJS)
and NSF grant 0744979 (TJP)
Demand for Zn2+ in Acid-Secreting Gastric Mucosa and Its Requirement for Intracellular Ca2+
Recent work has suggested that Zn(2+) plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn(2+) in gastric mucosa under baseline conditions and its regulation during secretory stimulation.Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn(2+) were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, (70)Zn(2+), from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg). In in vitro studies, uptake of (70)Zn(2+) from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn(2+) was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn(2+) {[Zn(2+)](i)} during exposure to standard extracellular concentrations of Zn(2+) (10 µM) for standard intervals of time. Under resting conditions, demand for extracellular Zn(2+) increased with exposure to secretagogues (forskolin, carbachol/histamine) and under conditions associated with increased intracellular Ca(2+) {[Ca(2+)](i)}. Uptake of Zn(2+) was abolished following removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores, suggesting that demand for extracellular Zn(2+) increases and depends on influx of extracellular Ca(2+).This study is the first to characterize the content and distribution of Zn(2+) in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca(2+) integrates basolateral demand for Zn(2+) with stimulation of secretion of HCl into the lumen of the gastric gland. Similar connections may be detectable in other secretory cells and tissues
Late 1920s film theory and criticism as a test-case for Benjamin’s generalizations on the experiential effects of editing
This article investigates Walter Benjamin’s influential generalization that the effects of cinema are akin to the hyper-stimulating experience of modernity. More specifically, I focus on his oft-cited 1935/36 claim that all editing elicits shock-like disruption. First, I propose a more detailed articulation of the experience of modernity understood as hyper-stimulation and call for distinguishing between at least two of its subsets: the experience of speed and dynamism, on the one hand, and the experience of shock/disruption, on the other. Then I turn to classical film theory of the late 1920s to demonstrate the existence of contemporary views on editing alternative to Benjamin’s. For instance, whereas classical Soviet and Weimar theorists relate the experience of speed and dynamism to both Soviet and classical Hollywood style editing, they reserve the experience of shock/disruption for Soviet montage. In order to resolve the conceptual disagreement between these theorists, on the one hand, and Benjamin, on the other, I turn to late 1920s Weimar film criticism. I demonstrate that, contrary to Benjamin’s generalizations about the disruptive and shock-like nature of all editing, and in line with other theorists’ accounts, different editing practices were regularly distinguished by comparison to at least two distinct hyper-stimulation subsets: speed and dynamism, and shock-like disruption. In other words, contemporaries regularly distinguished between Soviet montage and classical Hollywood editing patterns on the basis of experiential effects alone. On the basis of contemporary reviews of city symphonies, I conclude with a proposal for distinguishing a third subset – confusion.
This is an original manuscript / preprint of an article published by Taylor & Francis in Early Popular Visual Culture on 02 Aug 2016 available online: https://doi.org/10.1080/17460654.2016.1199322
Managing Agitated Behaviour in People with Alzheimer's Disease: The Role of Live Music
Background: Agitation due to Alzheimer's disease (AD) presents a challenge to occupational therapists working in the older people care sector. Recently, background music and music therapy have emerged as promising tools in the management of agitation in AD. This exploratory study investigated whether live music could reduce agitated behaviour in people with AD.
Method: A quasi-experimental one-group repeated measures design investigated the effect of a live, one-to-one, musical violin intervention on agitated behaviour in people with moderate-severe AD in a residential care facility. Seven participants received the musical intervention on three occasions. Participants were video recorded before, during and after each session. Behaviour was assessed by the investigator and a blinded assessor, using an investigator-modified Cohen-Mansfield Agitation Inventory. Thirty agitated behaviours were examined. Data were analysed using the Friedman test.
Results: This intervention reduced agitated behaviour among participants. Significant reductions in pacing/aimless wandering (p = 0.023), performing repetitious mannerisms (p = 0.036) and general restlessness (p = 0.007) were observed. The total number of agitated behaviours decreased significantly (median 5 [range 2-8] behaviours before the intervention to 1 [range 0-4] during and 1 [range 0-5] after the intervention [p = 0.005]).
Conclusion: Live music may be an effective strategy to reduce short-term agitated behaviour among people with AD