5 research outputs found

    Rescuing tetracycline class antibiotics for the treatment of multidrug-resistant Acinetobacter baumannii pulmonary infection

    Get PDF
    Acinetobacter baumannii causes high mortality in ventilator-associated pneumonia patients, and antibiotic treatment is compromised by multidrug-resistant strains resistant to β-lactams, carbapenems, cephalosporins, polymyxins, and tetracyclines. Among COVID-19 patients receiving ventilator support, a multidrug-resistant A. baumannii secondary infection is associated with a 2-fold increase in mortality. Here, we investigated the use of the 8-hydroxyquinoline ionophore PBT2 to break the resistance of A. baumannii to tetracycline class antibiotics. In vitro, the combination of PBT2 and zinc with either tetracycline, doxycycline, or tigecycline was shown to be bactericidal against multidrug-resistant A. baumannii, and any resistance that did arise imposed a fitness cost. PBT2 and zinc disrupted metal ion homeostasis in A. baumannii, increasing cellular zinc and copper while decreasing magnesium accumulation. Using a murine model of pulmonary infection, treatment with PBT2 in combination with tetracycline or tigecycline proved efficacious against multidrug-resistant A. baumannii. These findings suggest that PBT2 may find utility as a resistance breaker to rescue the efficacy of tetracycline-class antibiotics commonly employed to treat multidrug-resistant A. baumannii infections. Importance: Within intensive care unit settings, multidrug-resistant (MDR) Acinetobacter baumannii is a major cause of ventilator-associated pneumonia, and hospital-associated outbreaks are becoming increasingly widespread. Antibiotic treatment of A. baumannii infection is often compromised by MDR strains resistant to last-resort β-lactam (e.g., carbapenems), polymyxin, and tetracycline class antibiotics. During the on-going COVID-19 pandemic, secondary bacterial infection by A. baumannii has been associated with a 2-fold increase in COVID-19-related mortality. With a rise in antibiotic resistance and a reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. Rescuing the efficacy of existing therapies for the treatment of MDR A. baumannii infection represents a financially viable pathway, reducing time, cost, and risk associated with drug innovation.David M.P. De Oliveira, Brian M. Forde, Minh-Duy Phan, Bernhard Steiner, Bing Zhang, Johannes Zuegg, Ibrahim M. El-deeb, Gen Li, Nadia Keller, Stephan Brouwer, Nichaela Harbison-Price, Amanda J. Cork, Michelle J. Bauer, Saleh F. Alquethamy, Scott A. Beatson, Jason A. Roberts, David L. Paterson, Alastair G. McEwan, Mark A.T. Blaskovich, Mark A. Schembri, Christopher A. McDevitt, Mark von Itzstein, Mark J. Walke

    Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007–2017)

    No full text
    The use of silver to control infections was common in ancient civilizations. In recent years, this material has resurfaced as a therapeutic option due to the increasing prevalence of bacterial resistance to antimicrobials. This renewed interest has prompted researchers to investigate how the antimicrobial properties of silver might be enhanced, thus broadening the possibilities for antimicrobial applications. This review presents a compilation of patented products utilizing any forms of silver for its bactericidal actions in the decade 2007⁻2017. It analyses the trends in patent applications related to different forms of silver and their use for antimicrobial purposes. Based on the retrospective view of registered patents, statements of prognosis are also presented with a view to heightening awareness of potential industrial and health care applications

    A lipoglycopeptide antibiotic for Gram-positive biofilm-related infections

    No full text
    Drug-resistant Gram-positive bacterial infections are still a substantial burden on the public health system, with two bacteria (Staphylococcus aureus and Streptococcus pneumoniae) accounting for over 1.5 million drug-resistant infections in the United States alone in 2017. In 2019, 250,000 deaths were attributed to these pathogens globally. We have developed a preclinical glycopeptide antibiotic, MCC5145, that has excellent potency (MIC90 ≤0.06 g/ml) against hundreds of isolates of methicillin-resistant S. aureus (MRSA) and other Gram-positive bacteria, with a greater than 1000-fold margin over mammalian cell cytotoxicity values. The antibiotic has therapeutic in vivo efficacy when dosed subcutaneously in multiple murine models of established bacterial infections, including thigh infection with MRSA and blood septicemia with S. pneumoniae, as well as when dosed orally in an antibioticinduced Clostridioides difficile infection model. MCC5145 exhibited reduced nephrotoxicity at microbiologically active doses in mice compared to vancomycin. MCC5145 also showed improved activity against biofilms compared to vancomycin, both in vitro and in vivo, and a low propensity to select for drug resistance. Characterization of drug action using a transposon library bioinformatic platform showed a mechanistic distinction from other glycopeptide antibiotics.Mark A. T. Blaskovich ... Abiodun D. Ogunniy ... Darren J. Trott ... et al

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore