15 research outputs found

    Understanding Novel Superconductors with Ab Initio Calculations

    Full text link
    This chapter gives an overview of the progress in the field of computational superconductivity. Following the MgB2 discovery (2001), there has been an impressive acceleration in the development of methods based on Density Functional Theory to compute the critical temperature and other physical properties of actual superconductors from first-principles. State-of-the-art ab-initio methods have reached predictive accuracy for conventional (phonon-mediated) superconductors, and substantial progress is being made also for unconventional superconductors. The aim of this chapter is to give an overview of the existing computational methods for superconductivity, and present selected examples of material discoveries that exemplify the main advancements.Comment: 38 pages, 10 figures, Contribution to Springer Handbook of Materials Modellin

    Intercalation of graphite and hexagonal boron nitride by lithium

    No full text
    Although graphite and hexagonal form of BN (h-BN) are isoelectronic and have very similar lattice structures, it has been very difficult to intercalate h-BN while there are hundreds of intercalation compounds of graphite. We have done a comparative first principles investigation of lithium intercalation of graphite and hexagonal boron nitride to provide clues for the difficulty of h-BN intercalation. In particular lattice structure, cohesive energy, formation enthalpy, charge transfer and electronic structure of both intercalation compounds are calculated in the density functional theory framework with local density approximation to the exchange-correlation energy. The calculated formation enthalpy of the considered forms of Li intercalated h-BN is found to be positive which rules out h-BN intercalation without externally supplied energy. Also, the Li(BN)3 form of Li-intercalated h-BN is found to have a large electronic density of states at the Fermi level and an interlayer state that crosses Fermi level at the zone center; these properties make it an interesting material to investigate the role of interlayer states in the superconductivity of alkali intercalated layered structures. The most pronounced change in the charge distribution of the intercalated compounds is found to be charge transfer from the planar σ states to the π states
    corecore