21 research outputs found

    Escherichia coli as Host and Pathogen

    Get PDF
    Enterohemorrhagic E. coli (EHEC) are highly infectious food-borne pathogens that cause severe diarrhoea in both, industrialised and developing countries all over the world. Their pathogenicity factors involve shiga-like toxins and a type III secretion system along with so called effector proteins, which are translocated directly into the cytoplasm of their host cells, usually enterocytes. Most of these proteins are encoded in pathogenicity islands within the bacterial genome that are framed by sequences of lambdoid phages. Some of these phages are still able to produce infectious particles after UV induction. In this study I generated two protein-protein interactomes, namely EHEC-host and phage lambda-E. coli. For the EHEC-host interactome, 34 effector proteins that had been previously shown to be secreted into human host cells were cloned and screened against pooled human cDNA and ORF libraries via yeast two-hybrid screening. This resulted in 35 reproducible interactions of 15 EHEC effectors with 34 human proteins, of which only four had been published previously. Inclusion of secondary human protein interactors retrieved from the BioGRID database revealed that EHEC effectors are interconnected in the human cell. The translocated intimin receptor (TIR) that was found to interact with eight human proteins was compared to its homologue in enteropathogenic E. coli (EPEC). This revealed that five of the eight EHEC TIR interactors also interact with EPEC TIR. Another interaction discovered in this study involves the EHEC effector NleF, previously a protein of unknown function, and human caspase-9. LUMIER assays against other human caspases identified caspase-4 and -8 as additional binding partners of NleF. Tests with purified enzymes revealed that NleF can potentially inhibit all three caspases. The effector decreased caspase activity significantly in HeLa cell lysate and impaired apoptosis induction in HeLa and Caco-2 cells. A collaboration partner solved the crystal structure of the NleF/caspase-9 complex, which suggested a dominant role of the carboxy-terminal four amino acids in caspase-9 binding and inhibition. I was able to confirm these findings by constructing NleF versions with mutagenized carboxy-termini. NleF versions that lacked the last four amino acids or comprised an additional carboxy-terminal alanine were unable to bind any of the three caspases or impair apoptosis. Apoptosis inhibition is a strategy often applied by viral and bacterial pathogens. Even though NleF is not the only effector protein capable of inhibiting apoptosis in human cells, direct inhibition of caspases by bacterial effectors has not been reported to date. The phage lambda-E. coli.interactome was generated during my research stay at the J. Craig Venter Institute in Rockville (USA). I screened 68 phage lambda proteins against the E. coli W3110 ORF library via yeast two-hybrid screening using two different vector systems. This resulted in 144 reproducible interacting pairs. The phage lambda and E. coli proteins involved in interactions were categorized in functional groups and analysed for interactions between phage and host groups

    Draft genome sequences of five fungal strains isolated from Kefir

    Get PDF
    We present the annotated draft genome sequences of five fungal strains isolated from kefir grains. These isolates included three ascomycetous (Candida californica, Kazachstania exigua, and Kazachstania unispora) and one basidiomycetous (Rhodotorula mucilaginosa) species. The results revealed a detailed overview of the metabolic features of kefir fungi that will be potentially useful in biotechnological applications

    Bacteriophage Protein-Protein Interactions

    No full text
    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as φ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈ 55 proteins encoded by the T7 genome are connected by ≈ 43 interactions with another ≈ 15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and φ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. © 2012 Elsevier Inc.European Union ( HEALTH-F3-2009-223101); Spanish Ministry of Science and Innovation (BFU2008-00215)Peer Reviewe

    Microbial interactions shape cheese flavour formation

    No full text
    Abstract Cheese fermentation and flavour formation are the result of complex biochemical reactions driven by the activity of multiple microorganisms. Here, we studied the roles of microbial interactions in flavour formation in a year-long Cheddar cheese making process, using a commercial starter culture containing Streptococcus thermophilus and Lactococcus strains. By using an experimental strategy whereby certain strains were left out from the starter culture, we show that S. thermophilus has a crucial role in boosting Lactococcus growth and shaping flavour compound profile. Controlled milk fermentations with systematic exclusion of single Lactococcus strains, combined with genomics, genome-scale metabolic modelling, and metatranscriptomics, indicated that S. thermophilus proteolytic activity relieves nitrogen limitation for Lactococcus and boosts de novo nucleotide biosynthesis. While S. thermophilus had large contribution to the flavour profile, Lactococcus cremoris also played a role by limiting diacetyl and acetoin formation, which otherwise results in an off-flavour when in excess. This off-flavour control could be attributed to the metabolic re-routing of citrate by L. cremoris from diacetyl and acetoin towards α-ketoglutarate. Further, closely related Lactococcus lactis strains exhibited different interaction patterns with S. thermophilus, highlighting the significance of strain specificity in cheese making. Our results highlight the crucial roles of competitive and cooperative microbial interactions in shaping cheese flavour profile

    Finding functional differences between species in a microbial community: Case studies in wine fermentation and Kefir culture

    No full text
    Microbial life usually takes place in a community where individuals interact, by competition for nutrients, cross-feeding, inhibition by end-products, but also by their spatial distribution. Lactic acid bacteria are prominent members of microbial communities responsible for food fermentations. Their niche in a community depends on their own properties as well as those of the other species. Here, we apply a computational approach, which uses only genomic and metagenomic information and functional annotation of genes, to find properties that distinguish a species from others in the community, as well as to follow individual species in a community. We analyzed isolated and sequenced strains from a kefir community, and metagenomes from wine fermentations. We demonstrate how the distinguishing properties of an organism lead to experimentally testable hypotheses concerning the niche and the interactions with other species. We observe, for example, that L. kefiranofaciens, a dominant organism in kefir, stands out among the Lactobacilli because it potentially has more amino acid auxotrophies. Using metagenomic analysis of industrial wine fermentations we investigate the role of an inoculated L. plantarum in malolactic fermentation. We observed that L. plantarum thrives better on white than on red wine fermentations and has the largest number of phosphotransferase system among the bacteria observed in the wine communities. Also, L. plantarum together with Pantoea, Erwinia, Asaia, Gluconobacter, and Komagataeibacter genera had the highest number of genes involved in biosynthesis of amino acids

    The EHEC-host interactome reveals novel targets for the translocated intimin receptor.

    Get PDF
    Enterohemorrhagic E. coli (EHEC) manipulate their human host through at least 39 effector proteins which hijack host processes through direct protein-protein interactions (PPIs). To identify their protein targets in the host cells, we performed yeast two-hybrid screens, allowing us to find 48 high-confidence protein-protein interactions between 15 EHEC effectors and 47 human host proteins. In comparison to other bacteria and viruses we found that EHEC effectors bind more frequently to hub proteins as well as to proteins that participate in a higher number of protein complexes. The data set includes six new interactions that involve the translocated intimin receptor (TIR), namely HPCAL1, HPCAL4, NCALD, ARRB1, PDE6D, and STK16. We compared these TIR interactions in EHEC and enteropathogenic E. coli (EPEC) and found that five interactions were conserved. Notably, the conserved interactions included those of serine/threonine kinase 16 (STK16), hippocalcin-like 1 (HPCAL1) as well as neurocalcin-delta (NCALD). These proteins co-localize with the infection sites of EPEC. Furthermore, our results suggest putative functions of poorly characterized effectors (EspJ, EspY1). In particular, we observed that EspJ is connected to the microtubule system while EspY1 appears to be involved in apoptosis/cell cycle regulation

    Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community

    No full text
    Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures or synthetic assemblies. Here, we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microorganisms) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites such as amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microorganisms poorly suited for milk survive in—and even dominate—the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence

    The E. coli effector protein NleF is a caspase inhibitor.

    Get PDF
    Enterohemorrhagic and enteropathogenic E. coli (EHEC and EPEC) can cause severe and potentially life-threatening infections. Their pathogenicity is mediated by at least 40 effector proteins which they inject into their host cells by a type-III secretion system leading to the subversion of several cellular pathways. However, the molecular function of several effectors remains unknown, even though they contribute to virulence. Here we show that one of them, NleF, binds to caspase-4, -8, and -9 in yeast two-hybrid, LUMIER, and direct interaction assays. NleF inhibits the catalytic activity of the caspases in vitro and in cell lysate and prevents apoptosis in HeLa and Caco-2 cells. We have solved the crystal structure of the caspase-9/NleF complex which shows that NleF uses a novel mode of caspase inhibition, involving the insertion of the carboxy-terminus of NleF into the active site of the protease. In conformance with our structural model, mutagenized NleF with truncated or elongated carboxy-termini revealed a complete loss in caspase binding and apoptosis inhibition. Evasion of apoptosis helps pathogenic E. coli and other pathogens to take over the host cell by counteracting the cell's ability to self-destruct upon infection. Recently, two other effector proteins, namely NleD and NleH, were shown to interfere with apoptosis. Even though NleF is not the only effector protein capable of apoptosis inhibition, direct inhibition of caspases by bacterial effectors has not been reported to date. Also unique so far is its mode of inhibition that resembles the one obtained for synthetic peptide-type inhibitors and as such deviates substantially from previously reported caspase-9 inhibitors such as the BIR3 domain of XIAP

    Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance.

    Get PDF
    Microbial communities are composed of cells of varying metabolic capacity, and regularly include auxotrophs that lack essential metabolic pathways. Through analysis of auxotrophs for amino acid biosynthesis pathways in microbiome data derived from >12,000 natural microbial communities obtained as part of the Earth Microbiome Project (EMP), and study of auxotrophic-prototrophic interactions in self-establishing metabolically cooperating yeast communities (SeMeCos), we reveal a metabolically imprinted mechanism that links the presence of auxotrophs to an increase in metabolic interactions and gains in antimicrobial drug tolerance. As a consequence of the metabolic adaptations necessary to uptake specific metabolites, auxotrophs obtain altered metabolic flux distributions, export more metabolites and, in this way, enrich community environments in metabolites. Moreover, increased efflux activities reduce intracellular drug concentrations, allowing cells to grow in the presence of drug levels above minimal inhibitory concentrations. For example, we show that the antifungal action of azoles is greatly diminished in yeast cells that uptake metabolites from a metabolically enriched environment. Our results hence provide a mechanism that explains why cells are more robust to drug exposure when they interact metabolically
    corecore