1,743 research outputs found

    Optimum earth re-entry corridors

    Get PDF
    Steepest ascent optimization procedure for reentry trajectory of manned aerospace vehicle

    Low Frequency Radio Observations of X-ray Ghost Bubbles in Abell 2597: A History of Radio Activity in the Core

    Full text link
    A previous analysis of the Chandra X-ray image of the center of the cooling core cluster Abell 2597 showed two ``ghost holes'' in the X-ray emission to the west and northeast of the central radio galaxy PKS 2322-123. Previous radio observations did not detect any radio emission coming from the interior of the X-ray holes. We present new low frequency radio observations of Abell 2597. At 330 MHz, radio emission extends into the interior of the western ghost bubble, but not the northeast one. Our re-analysis of the archival Chandra data shows evidence for an X-ray tunnel (elongated region of reduced X-ray emission) extending from near the center of the cD out to the west ghost bubble. We also detect a smaller X-ray hole to the northeast of the center of the cD and closer than the outer ghost bubbles. Radio observations at 1.3 GHz show extensions to the west along the X-ray tunnel toward the west ghost bubble, to the northeast into the new X-ray hole, and to the northwest. All of these structures are much larger than the two inner radio lobes seen previously at 8 GHz. The X-ray tunnel suggests that the west ghost bubble is part of a continuous flow of radio plasma out from the active galactic nucleus, rather than a detached buoyant old radio lobe, and thus it may be an intermediate case between an active radio galaxy and a buoyant lobe.Comment: ApJ accepted, 5 page

    Chandra Observation of the Cluster Environment of a WAT Radio Source in Abell 1446

    Full text link
    Wide-angle tail (WAT) radio sources are often found in the centers of galaxy clusters where intracluster medium (ICM) ram pressure may bend the lobes into their characteristic C-shape. We examine the low redshift (z=0.1035) cluster Abell 1446, host to the WAT radio source 1159+583. The cluster exhibits possible evidence for a small-scale cluster-subcluster merger as a cause of the WAT radio source morphology. This evidence includes the presence of temperature and pressure substructure along the line that bisects the WAT as well as a possible wake of stripped interstellar material or a disrupted cool core to the southeast of the host galaxy. A filament to the north may represent cool, infalling gas that's contributing to the WAT bending while spectroscopically determined redshifts of member galaxies may indicate some component of a merger occurring along the line-of-sight. The WAT model of high flow velocity and low lobe density is examined as another scenario for the bending of 1159+583. It has been argued that such a model would allow the ram pressure due to the galaxy's slow motion through the ICM to shape the WAT source. A temperature profile shows that the cluster is isothermal (kT= 4.0 keV) in a series of annuli reaching a radius of 400 kpc. There is no evidence of an ongoing cooling flow. Temperature, abundance, pressure, density, and mass profiles, as well as two-dimensional maps of temperature and pressure are presented.Comment: 40 AASTeX pages including 15 postscript figures; accepted for publication in Ap

    Cross-correlation Weak Lensing of SDSS Galaxy Clusters III: Mass-to-light Ratios

    Get PDF
    We present measurements of the excess mass-to-light ratio measured aroundMaxBCG galaxy clusters observed in the SDSS. This red sequence cluster sample includes objects from small groups with masses ranging from ~5x10^{12} to ~10^{15} M_{sun}/h. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean \Delta \rho(r) = \rho(r) - \bar{\rho} for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density \Delta l(r) = l(r) - \bar{l} measured in the z=0.25 i-band. For both mass and light, we de-project the profiles to produce 3D mass and light profiles over scales from 25 kpc/ to 22 Mpc/h. From these profiles we calculate the cumulative excess mass M(r) and excess light L(r) as a function of separation from the BCG. On small scales, where \rho(r) >> \bar{\rho}, the integrated mass-to-light profile may be interpreted as the cluster mass-to-light ratio. We find the M/L_{200}, the mass-to-light ratio within r_{200}, scales with cluster mass as a power law with index 0.33+/-0.02. On large scales, where \rho(r) ~ \bar{\rho}, the M/L approaches an asymptotic value independent of cluster richness. For small groups, the mean M/L_{200} is much smaller than the asymptotic value, while for large clusters it is consistent with the asymptotic value. This asymptotic value should be proportional to the mean mass-to-light ratio of the universe . We find /b^2_{ml} = 362+/-54 h (statistical). There is additional uncertainty in the overall calibration at the ~10% level. The parameter b_{ml} is primarily a function of the bias of the L <~ L_* galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find \Omega_m/b^2_{ml} = 0.02+/-0.03, independent of the Hubble parameter.Comment: Third paper in a series; v2.0 incorporates ApJ referee's suggestion

    Hot Bubbles in Cooling Flow Clusters

    Get PDF
    As more cooling flow clusters of galaxies with central radio sources are observed with the Chandra and XMM-Newton X-ray Observatories, more examples of "bubbles" (low-emission regions in the X-ray coincident with radio emission) are being found. These bubbles are surrounded by bright shells of X-ray emission, and no evidence of current strong shocks has yet been found. Using an analytic approach and some simplifying assumptions, we derive expressions relating the size and location of a bubble, as well as the density contrast between the bubble and the ambient medium, with the shock history of the bubble. These can be applied straightforwardly to new observations. We find that existing observations are consistent with a mild shock occurring in the past, and with the bulk of the cool material in the X-ray shells being cooled at the cluster center and then pushed outward by the radio source. Strong shocks are ruled out unless they occurred more than 1 Gyr ago. We also discuss Rayleigh-Taylor instabilities as well as the case of a bubble expanding into an older bubble produced from a previous cycle of radio activity.Comment: 20 pages, Submitted to Ap
    corecore