164 research outputs found

    A population of luminous accreting black holes with hidden mergers

    Full text link
    Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous quasars and others showing no such association. Recent observations have shown that a black hole is likely to become heavily obscured behind merger-driven gas and dust, even in the early stages of the merger, when the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations further suggest that such obscuration and black-hole accretion peaks in the final merger stage, when the two galactic nuclei are closely separated (less than 3 kiloparsecs). Resolving this final stage requires a combination of high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray observations to detect highly obscured sources. However, large numbers of obscured luminous accreting supermassive black holes have been recently detected nearby (distances below 250 megaparsecs) in X-ray observations. Here we report high-resolution infrared observations of hard-X-ray-selected black holes and the discovery of obscured nuclear mergers, the parent populations of supermassive-black-hole mergers. We find that obscured luminous black holes (bolometric luminosity higher than 2x10^44 ergs per second) show a significant (P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a sample of inactive galaxies with matching stellar masses and star formation rates (1.1 per cent), in agreement with theoretical predictions. Using hydrodynamic simulations, we confirm that the excess of nuclear mergers is indeed strongest for gas-rich major-merger hosts of obscured luminous black holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the authors' version of the wor

    An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core

    Get PDF
    The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report the discovery of a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decline of its light curve follows the predicted mass accretion rate, and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about 2 million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.Comment: To appear in Nature on May 10, 201

    Clues from nearby galaxies to a better theory of cosmic evolution

    Full text link
    The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding universe. But the properties of nearby galaxies that can be observed in greatest detail suggest a still better theory would more rapidly gather matter into galaxies and groups of galaxies. This happens in theoretical ideas now under discussion.Comment: published in Natur

    Gravity at Work: How the Build-Up of Environments Shape Galaxy Properties

    Full text link
    We present results on the heating of the inter-cluster medium (ICM) by gravitational potential energy from in-falling satellites. We calculate the available excess energy of baryons once they are stripped from their satellite and added to the ICM of the hosting environment. this excess energy is a strong function of environment and we find that it can exceed the contribution from AGNs or supernovae (SN) by up to two orders of magnitude in the densest environments/haloes. Cooling by radiative losses is in general fully compensated by gravitational heating in massive groups and clusters with hot gas temperature > 1 keV. The reason for the strong environment dependence is the continued infall of substructure onto dense environments during their formation in contrast to field-like environments. We show that gravitational heating is able to reduce the number of too luminous galaxies in models and to produce model luminosity functions in agreement with observations.Comment: 8 pages, 3 figures. To be published in Proceedings of JENAM 2010, Symposium 2: "Environment and the formation of galaxies: 30 years later

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres

    Galaxies appear simpler than expected

    Full text link
    Galaxies are complex systems the evolution of which apparently results from the interplay of dynamics, star formation, chemical enrichment, and feedback from supernova explosions and supermassive black holes. The hierarchical theory of galaxy formation holds that galaxies are assembled from smaller pieces, through numerous mergers of cold dark matter. The properties of an individual galaxy should be controlled by six independent parameters including mass, angular-momentum, baryon-fraction, age and size, as well as by the accidents of its recent haphazard merger history. Here we report that a sample of galaxies that were first detected through their neutral hydrogen radio-frequency emission, and are thus free of optical selection effects, shows five independent correlations among six independent observables, despite having a wide range of properties. This implies that the structure of these galaxies must be controlled by a single parameter, although we cannot identify this parameter from our dataset. Such a degree of organisation appears to be at odds with hierarchical galaxy formation, a central tenet of the cold dark matter paradigm in cosmology.Comment: 26 pages, 14 figure

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    The dependence of low redshift galaxy properties on environment

    Full text link
    We review recent results on the dependence of various galaxy properties on environment at low redshift. As environmental indicators, we use group mass, group-centric radius, and the distinction between centrals and satellites; examined galaxy properties include star formation rate, colour, AGN fraction, age, metallicity and concentration. In general, satellite galaxies diverge more markedly from their central counterparts if they reside in more massive haloes. We show that these results are consistent with starvation being the main environmental effect, if one takes into account that satellites that reside in more massive haloes and at smaller halo-centric radii on average have been accreted a longer time ago. Nevertheless, environmental effects are not fully understood yet. In particular, it is puzzling that the impact of environment on a galaxy seems independent of its stellar mass. This may indicate that the stripping of the extended gas reservoir of satellite galaxies predominantly occurs via tidal forces rather than ram-pressure.Comment: Invited Review given at the Workshop "Environment and the Formation of Galaxies: 30 years later" held in Lisbon, 6-7 September 2010. 10 pages, 5 figure

    Novel quantitative trait locus is mapped to chromosome 12p11 for left ventricular mass in Dominican families: the Family Study of Stroke Risk and Carotid Atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Left ventricular mass (LVM) is an important risk factor for stroke and vascular disease. The genetic basis of LVM is unclear although a high heritability has been suggested. We sought to map quantitative trait loci (QTL) for LVM using large Dominican families.</p> <p>Methods</p> <p>Probands were selected from Dominican subjects of the population-based Northern Manhattan Study (NOMAS). LVM was measured by transthoracic echocardiography. A set of 405 microsatellite markers was used to screen the whole genome among 1360 subjects from 100 Dominican families who had complete phenotype data and DNA available. A polygenic covariate screening was run to identify the significant covariates. Variance components analysis was used to estimate heritability and to detect evidence for linkage, after adjusting for significant risk factors. Ordered-subset Analysis (OSA) was conducted to identify a more homogeneous subset for stratification analysis.</p> <p>Results</p> <p>LVM had a heritability of 0.58 in the studied population (p < 0.0001). The most significant evidence for linkage was found at chromosome 12p11 (MLOD = 3.11, empirical p = 0.0003) with peak marker at D12S1042. This linkage was significantly increased in a subset of families with the high average waist circumference (MLOD = 4.45, p = 0.0045 for increase in evidence for linkage).</p> <p>Conclusion</p> <p>We mapped a novel QTL near D12S1042 for LVM in Dominicans. Enhanced linkage evidence in families with larger waist circumference suggests that gene(s) residing within the QTL interact(s) with abdominal obesity to contribute to phenotypic variation of LVM. Suggestive evidence for linkage (LOD = 1.99) has been reported at the same peak marker for left ventricular geometry in a White population from the HyperGEN study, underscoring the importance of this QTL for left ventricular phenotype. Further fine mapping and validation studies are warranted to identify the underpinning genes.</p
    corecore