3 research outputs found

    Understanding Enhanced Boiling With Triton X Surfactants

    Get PDF
    Heat transfer performance in pool boiling is largely dictated by bubble growth, departure, and number of nucleation sites. It is a well known phenomenon that adding surfactants can lower the liquid-vapor surface tension and increase the bubble departure frequency, thereby enhancing heat transfer. In addition to faster departure rates, surfactants are observed to dramatically increase the number of nucleation sites, which cannot be explained by simple surface tension arguments. Furthermore, it is not well understood which surfactant properties such as chemical composition and molecular structure affect boiling most significantly. From our experiments using Triton X-100 and Triton X-114 nonionic surfactants, we attribute boiling enhancement mainly to adsorption to the solid-liquid interface. Using the Mikic-Rohsenow model for boiling, a simple linear adsorption model, and the Cassie-Baxter description for contact angle, we developed a model that shows agreement with experimental results. This work offers some insights on how to predict boiling enhancement based on surfactant chemistry alone, which may aid in choosing optimal surfactants for boiling in the future.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (DMR - 0819762

    mRNA vaccine delivery using lipid nanoparticles

    No full text
    mRNA vaccines elicit a potent immune response including antibodies and cytotoxic T cells. mRNA vaccines are currently evaluated in clinical trials for cancer immunotherapy applications, but also have great potential as prophylactic vaccines. Efficient delivery of mRNA vaccines will be key for their success and translation to the clinic. Among potential nonviral vectors, lipid nanoparticles are particularly promising. Indeed, lipid nanoparticles can be synthesized with relative ease in a scalable manner, protect the mRNA against degradation, facilitate endosomal escape, can be targeted to the desired cell type by surface decoration with ligands, and as needed, can be codelivered with adjuvants.National Institutes of Health (U.S.) (EB 000244

    Reconfigurable and responsive droplet-based compound micro-lenses

    No full text
    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses’ functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.National Science Foundation (U.S.) (DMREF-1533985)Natural Sciences and Engineering Research Council of Canada (Graduate Fellowship)National Science Foundation (U.S.) (Grant DMR-1410718)Max Planck Society for the Advancement of ScienceMassachusetts Institute of Technology. Department of Mechanical Engineerin
    corecore