167 research outputs found

    Views of parents, adults born preterm and professionals on linkage of real-world data of preterm babies

    Get PDF
    Objective To explore views of parents of preterm babies, adults born preterm and professionals, on the linkage of real-world health and education data for research on improving future outcomes of babies born preterm. Design Three-stage mixed-methods participatory design involving focus groups, a national survey and interviews. Survey participants who expressed uncertainty or negative views were sampled purposively for invitation to interview. Mixed methods were used for data analysis. Setting and participants All data collection was online. Participants were: focus groups—17 parents; survey—499 parents, 44 adults born preterm (total 543); interviews—6 parents, 1 adult born preterm, 3 clinicians, 2 teachers. Results Three key themes were identified: (1) Data linkage and opt-out consent make sense for improving future outcomes. We found clear demand for better information on long-term outcomes and strong support for data linkage with opt-out consent as a means of achieving this. (2) Information requirements—what, how and when. There was support for providing information in different formats and discussing linkage near to, or following discharge from, the neonatal unit, but not sooner. (3) Looking to the future; the rights of young people. We identified a desire for individuals born preterm to be consulted in the future on the use of their data. Conclusion With appropriate information provision, at the right time, parents, adults born preterm and professionals are supportive of data linkage for research, including where temporary identifiers and opt-out consent are used. Resources are being co-produced to improve communication about routine data linkage

    Hypertrophy of mature xenopus muscle fibres in culture induced by synergy of albumin and insulin

    Get PDF
    The aim of this study was to investigate effects of albumin and insulin separately as well as in combination on mature muscle fibres during long-term culture. Single muscle fibres were dissected from m. iliofibularis of Xenopus laevis and attached to a force transducer in a culture chamber. Fibres were cultured in a serum-free medium at slack length (mean sarcomere length 2.3 μm) for 8 to 22 days. The medium was supplemented with (final concentrations): (1) bovine insulin (6 nmol/L or 200-600 nmol/L), (2) 0.2% bovine albumin or (3) 0.2% bovine albumin in combination with insulin (120 nmol/L). In culture medium with insulin, 50% of the muscle fibres became in-excitable within 7-12 days, whereas the other 50% were stable. Caffeine contractures of in-excitable muscle fibres produced 80.4±2.4% of initial peak tetanic force, indicating impaired excitation-contraction (E-C) coupling in in-excitable fibres. In the presence of albumin, all cultured muscle fibres were stable for at least 10 days. Muscle fibres cultured in medium with insulin or albumin exclusively did not hypertrophy or change the number of sarcomeres in series. In contrast, muscle fibres cultured with both albumin and insulin showed an increase in tetanic force and fibre cross-sectional area of 19.6±2.8% and 32.5±4.9%, respectively, (means±SEM.; P=0.007) after 16.3±1.7 days, whereas the number of sarcomeres in series remained unchanged. We conclude that albumin prevents muscle fibre damage and preserves E-C coupling in culture. Furthermore, albumin is important in regulating muscle fibre adaptation by a synergistic action with growth factors like insulin. © 2008 The Author(s)

    Organotypic modelling as a means of investigating epithelial-stromal interactions during tumourigenesis

    Get PDF
    The advent of co-culture approaches has allowed researchers to more accurately model the behaviour of epithelial cells in cell culture studies. The initial work on epidermal modelling allowed the development of reconstituted epidermis, growing keratinocytes on top of fibroblasts seeded in a collagen gel at an air-liquid interface to generate terminally differentiated 'skin equivalents'. In addition to developing ex vivo skin sheets for the treatment of burns victims, such cultures have also been used as a means of investigating both the development and repair of the epidermis, in more relevant conditions than simple two-dimensional culture, but without the use of animals. More recently, by varying the cell types used and adjusting the composition of the matrix components, this physiological system can be adapted to allow the study of interactions between tumour cells and their surrounding stroma, particularly with regards to how such interactions regulate invasion. Here we provide a summary of the major themes involved in tumour progression and consider the evolution of the approaches used to study cancer cell behaviour. Finally, we review how organotypic models have facilitated the study of several key pathways in cancer development and invasion, and speculate on the exciting future roles for these models in cancer research

    Metabolic inactivation of estrogens in breast tissue by UDP-glucuronosyltransferase enzymes: an overview

    Get PDF
    The breast tissue is the site of major metabolic conversions of estradiol (E(2)) mediated by specific cytochromes P450 hydroxylations and methylation by catechol-O-methytransferase. In addition to E(2 )itself, recent findings highlight the significance of 4-hydroxylated estrogen metabolites as chemical mediators and their link to breast cancer development and progression, whereas, in opposition, 2-methoxylated estrogens appear to be protective. Recent data also indicate that breast tissue possesses enzymatic machinery to inactivate and eliminate E(2 )and its oxidized and methoxylated metabolites through conjugation catalyzed by UDP-glucuronosyltransferases (UGTs), which involves the covalent addition of glucuronic acid. In opposition to other metabolic pathways of estrogen, the UGT-mediated process leads to the formation of glucuronides that are devoid of biologic activity and are readily excreted from the tissue into the circulation. This review addresses the most recent findings on the identification of UGT enzymes that are responsible for the glucuronidation of E(2 )and its metabolites, and evidence regarding their potential role in breast cancer

    Angiogenesis in a human neuroblastoma xenograft model: mechanisms and inhibition by tumour-derived interferon-γ

    Get PDF
    Tumour progression in neuroblastoma (NB) patients correlates with high vascular index. We have previously shown that the ACN NB cell line is tumorigenic and angiogenic in immunodeficient mice, and that interferon-γ (IFN-γ) gene transfer dampens ACN tumorigenicity. As IFN-γ represses lymphocyte-induced tumour angiogenesis in various murine models and inhibits proliferation and migration of human endothelial cells, we have investigated the antiangiogenic activity of tumour-derived IFN-γ and the underlying mechanism(s). In addition, we characterised the tumour vasculature of the ACN xenografts, using the chick embryo chorioallantoic membrane assay. We show that the ACN/IFN-γ xenografts had a lower microvessel density and less in vivo angiogenic potential than the vector-transfected ACN/neo. The vascular channels of both xenografts were formed by a mixed endothelial cell population of murine and human origin, as assessed by the FICTION (fluorescence immunophenotyping and interphase cytogenetics) technique. With respect to ACN/neo, the ACN/IFN-γ xenografts showed more terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling-positive human and murine endothelial cells, suggesting that inhibition of angiogenesis by IFN-γ was dependent on the induction of apoptosis, likely mediated by nitric oxide. Once the dual origin of tumour vasculature is confirmed in NB patients, the xenograft model described here will prove useful in testing the efficacy of different antiangiogenic compounds

    The comorbidity profiles and medication issues of patients with multiple system atrophy: a systematic cross-sectional analysis

    Get PDF
    Background Multiple system atrophy (MSA) is a complex and fatal neurodegenerative movement disorder. Understanding the comorbidities and drug therapy is crucial for MSA patients’ safety and management. Objectives To investigate the pattern of comorbidities and aspects of drug therapy in MSA patients. Methods Cross-sectional data of MSA patients according to Gilman et al. (2008) diagnostic criteria and control patients without neurodegenerative diseases (non-ND) were collected from German, multicenter cohorts. The prevalence of comorbidities according to WHO ICD-10 classification and drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were identified using AiDKlinik®. Results The analysis included 254 MSA and 363 age- and sex-matched non-ND control patients. MSA patients exhibited a significantly higher burden of comorbidities, in particular diseases of the genitourinary system. Also, more medications were prescribed MSA patients, resulting in a higher prevalence of polypharmacy. Importantly, the risk of potential drug-drug interactions, including severe interactions and contraindicated combinations, was elevated in MSA patients. When comparing MSA-P and MSA-C subtypes, MSA-P patients suffered more frequently from diseases of the genitourinary system and diseases of the musculoskeletal system and connective tissue. Conclusions MSA patients face a substantial burden of comorbidities, notably in the genitourinary system. This, coupled with increased polypharmacy and potential drug interactions, highlights the complexity of managing MSA patients. Clinicians should carefully consider these factors when devising treatment strategies for MSA patients
    • …
    corecore