5,668 research outputs found

    Stochastic stability versus localization in chaotic dynamical systems

    Full text link
    We prove stochastic stability of chaotic maps for a general class of Markov random perturbations (including singular ones) satisfying some kind of mixing conditions. One of the consequences of this statement is the proof of Ulam's conjecture about the approximation of the dynamics of a chaotic system by a finite state Markov chain. Conditions under which the localization phenomenon (i.e. stabilization of singular invariant measures) takes place are also considered. Our main tools are the so called bounded variation approach combined with the ergodic theorem of Ionescu-Tulcea and Marinescu, and a random walk argument that we apply to prove the absence of ``traps'' under the action of random perturbations.Comment: 27 pages, LaTe

    Multicomponent dynamical systems: SRB measures and phase transitions

    Full text link
    We discuss a notion of phase transitions in multicomponent systems and clarify relations between deterministic chaotic and stochastic models of this type of systems. Connections between various definitions of SRB measures are considered as well.Comment: 13 pages, LaTeX 2

    Clues to the nature of dark matter from first galaxies

    Full text link
    We use thirty-eight high-resolution simulations of galaxy formation between redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM) candidate on the high-redshift Universe. We focus our attention on the stellar mass function and the global star formation rate and consider the consequences for reionization, namely the neutral hydrogen fraction evolution and the electron scattering optical depth. We find that three different effects contribute to differentiate warm and cold dark matter (CDM) predictions: WDM suppresses the number of haloes with mass less than few 10910^9 M_{\odot}; at a fixed halo mass, WDM produces fewer stars than CDM; and finally at halo masses below 10910^9 M_{\odot}, WDM has a larger fraction of dark haloes than CDM post-reionization. These three effects combine to produce a lower stellar mass function in WDM for galaxies with stellar masses at and below 107\sim 10^7 M_{\odot}. For z>7z > 7, the global star formation density is lower by a factor of two in the WDM scenario, and for a fixed escape fraction, the fraction of neutral hydrogen is higher by 0.3 at z6z \sim 6. This latter quantity can be partially reconciled with CDM and observations only by increasing the escape fraction from 23 per cent to 34 per cent. Overall, our study shows that galaxy formation simulations at high redshift are a key tool to differentiate between dark matter candidates given a model for baryonic physics.Comment: 11 pages, 8 figures, submitted to MNRA

    Productivity and efficiency of central government departments: a mixed-effect model applied to Dutch data in the period 2012-2019

    Get PDF
    Central government aims to stimulate the efficiency and technical change of public organizations. However, government primarily focuses on the institutions that deliver final public services, but not on the policy making institutions. This article analyses the productivity of central government departments (CGDs). From bureaucratic theory we hypothesize that productivity of these CGDs are low. In order to measure efficiency and technical change we estimate an average cost function based on data of Dutch individual CGDs during the period 2012-2019. The dataset consists of data on various services provided, resource usage and efficiency determinants. The cost function is estimated by a mixed-effect non-linear least squares method. The outcomes show that there are large efficiency differences among CGDs. It is also striking that technical change of the CGDs is nonexistent over time, probably due to a lack of innovative behaviour, unwieldy bureaucracies and increasingly complex paperwork

    NIHAO XX: The impact of the star formation threshold on the cusp-core transformation of cold dark matter haloes

    Full text link
    We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the impact of the threshold for star formation on the response of the dark matter (DM) halo to baryonic processes. The fiducial NIHAO threshold, n=10cm3n=10\, {\rm cm}^{-3}, results in strong expansion of the DM halo in galaxies with stellar masses in the range 107.5<Mstar<109.5M10^{7.5} < M_{star} < 10^{9.5} M_{\odot}. We find that lower thresholds such as n=0.1n=0.1 (as employed by the EAGLE/APOSTLE and Illustris/AURIGA projects) do not result in significant halo expansion at any mass scale. Halo expansion driven by supernova feedback requires significant fluctuations in the local gas fraction on sub-dynamical times (i.e., < 50 Myr at galaxy half-light radii), which are themselves caused by variability in the star formation rate. At one per cent of the virial radius, simulations with n=10n=10 have gas fractions of 0.2\simeq 0.2 and variations of 0.1\simeq 0.1, while n=0.1n=0.1 simulations have order of magnitude lower gas fractions and hence do not expand the halo. The observed DM circular velocities of nearby dwarf galaxies are inconsistent with CDM simulations with n=0.1n=0.1 and n=1n=1, but in reasonable agreement with n=10n=10. Star formation rates are more variable for higher nn, lower galaxy masses, and when star formation is measured on shorter time scales. For example, simulations with n=10n=10 have up to 0.4 dex higher scatter in specific star formation rates than simulations with n=0.1n=0.1. Thus observationally constraining the sub-grid model for star formation, and hence the nature of DM, should be possible in the near future.Comment: 18 pages, 13 figures, accepted to MNRA

    Hysteresis phenomenon in deterministic traffic flows

    Full text link
    We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic ``particle-hopping'' traffic flow model being a straightforward generalization to the well known Nagel-Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'') phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the ``jammed'' (or ``liquid'') phase. Between the two critical values each of these phases may take place, which can be interpreted as an ``overcooled gas'' phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the Journal of Statistical Physic

    Sharp interface limit for a phase field model in structural optimization

    Full text link
    We formulate a general shape and topology optimization problem in structural optimization by using a phase field approach. This problem is considered in view of well-posedness and we derive optimality conditions. We relate the diffuse interface problem to a perimeter penalized sharp interface shape optimization problem in the sense of Γ\Gamma-convergence of the reduced objective functional. Additionally, convergence of the equations of the first variation can be shown. The limit equations can also be derived directly from the problem in the sharp interface setting. Numerical computations demonstrate that the approach can be applied for complex structural optimization problems

    The edge of galaxy formation III: The effects of warm dark matter on Milky Way satellites and field dwarfs

    Full text link
    In this third paper of the series, we investigate the effects of warm dark matter with a particle mass of mWDM=3keVm_\mathrm{WDM}=3\,\mathrm{keV} on the smallest galaxies in our Universe. We present a sample of 21 hydrodynamical cosmological simulations of dwarf galaxies and 20 simulations of satellite-host galaxy interaction that we performed both in a Cold Dark Matter (CDM) and Warm Dark Matter (WDM) scenario. In the WDM simulations, we observe a higher critical mass for the onset of star formation. Structure growth is delayed in WDM, as a result WDM haloes have a stellar population on average two Gyrs younger than their CDM counterparts. Nevertheless, despite this delayed star formation, CDM and WDM galaxies are both able to reproduce the observed scaling relations for velocity dispersion, stellar mass, size, and metallicity at z=0z=0. WDM satellite haloes in a Milky Way mass host are more susceptible to tidal stripping due to their lower concentrations, but their galaxies can even survive longer than the CDM counterparts if they live in a dark matter halo with a steeper central slope. In agreement with our previous CDM satellite study we observe a steepening of the WDM satellites' central dark matter density slope due to stripping. The difference in the average stellar age for satellite galaxies, between CDM and WDM, could be used in the future for disentangling these two models.Comment: 10 pages, 11 figures, accepted for publication on MNRA
    corecore