598 research outputs found

    The Adverse Effects of Alcohol on Vitamin A Metabolism

    Get PDF
    The objective of this review is to explore the relationship between alcohol and the metabolism of the essential micronutrient, vitamin A; as well as the impact this interaction has on alcohol-induced disease in adults. Depleted hepatic vitamin A content has been reported in human alcoholics, an observation that has been confirmed in animal models of chronic alcohol consumption. Indeed, alcohol consumption has been associated with declines in hepatic levels of retinol (vitamin A), as well as retinyl ester and retinoic acid; collectively referred to as retinoids. Through the use of animal models, the complex interplay between alcohol metabolism and vitamin A homeostasis has been studied; the reviewed research supports the notion that chronic alcohol consumption precipitates a decline in hepatic retinoid levels through increased breakdown, as well as increased export to extra-hepatic tissues. While the precise biochemical mechanisms governing alcoholโ€™s effect remain to be elucidated, its profound effect on hepatic retinoid status is irrefutable. In addition to a review of the literature related to studies on tissue retinoid levels and the metabolic interactions between alcohol and retinoids, the significance of altered hepatic retinoid metabolism in the context of alcoholic liver disease is also considered

    Aldehyde dehydrogenase 1a3 defines a subset of failing pancreatic ฮฒ cells in diabetic mice

    Get PDF
    Insulin-producing ฮฒ cells become dedifferentiated during diabetes progression. An impaired ability to select substrates for oxidative phosphorylation, or metabolic inflexibility, initiates progression from ฮฒ-cell dysfunction to ฮฒ-cell dedifferentiation. The identification of pathways involved in dedifferentiation may provide clues to its reversal. Here we isolate and functionally characterize failing ฮฒ cells from various experimental models of diabetes and report a striking enrichment in the expression of aldehyde dehydrogenase 1 isoform A3 (ALDH+) as ฮฒ cells become dedifferentiated. Flow-sorted ALDH+ islet cells demonstrate impaired glucose-induced insulin secretion, are depleted of Foxo1 and MafA, and include a Neurogenin3-positive subset. RNA sequencing analysis demonstrates that ALDH+ cells are characterized by: (i) impaired oxidative phosphorylation and mitochondrial complex I, IV and V; (ii) activated RICTOR; and (iii) progenitor cell markers. We propose that impaired mitochondrial function marks the progression from metabolic inflexibility to dedifferentiation in the natural history of ฮฒ-cell failure

    Metabolic Changes in Skin Caused by Scd1 Deficiency: A Focus on Retinol Metabolism

    Get PDF
    We previously reported that mice with skin-specific deletion of stearoyl-CoA desaturase-1 (Scd1) recapitulated the skin phenotype and hypermetabolism observed in mice with a whole-body deletion of Scd1. In this study, we first performed a diet-induced obesity experiment at thermoneutral temperature (33ยฐC) and found that skin-specific Scd1 knockout (SKO) mice still remain resistant to obesity. To elucidate the metabolic changes in the skin that contribute to the obesity resistance and skin phenotype, we performed microarray analysis of skin gene expression in male SKO and control mice fed a standard rodent diet. We identified an extraordinary number of differentially expressed genes that support the previously documented histological observations of sebaceous gland hypoplasia, inflammation and epidermal hyperplasia in SKO mice. Additionally, transcript levels were reduced in skin of SKO mice for genes involved in fatty acid synthesis, elongation and desaturation, which may be attributed to decreased abundance of key transcription factors including SREBP1c, ChREBP and LXRฮฑ. Conversely, genes involved in cholesterol synthesis were increased, suggesting an imbalance between skin fatty acid and cholesterol synthesis. Unexpectedly, we observed a robust elevation in skin retinol, retinoic acid and retinoic acid-induced genes in SKO mice. Furthermore, SEB-1 sebocytes treated with retinol and SCD inhibitor also display an elevation in retinoic acid-induced genes. These results highlight the importance of monounsaturated fatty acid synthesis for maintaining retinol homeostasis and point to disturbed retinol metabolism as a novel contributor to the Scd1 deficiency-induced skin phenotype

    Distinct Populations of Hepatic Stellate Cells in the Mouse Liver Have Different Capacities for Retinoid and Lipid Storage

    Get PDF
    Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50โ€“60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. Conclusion: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be โ€œprimedโ€ and ready for rapid response to acute liver injury
    • โ€ฆ
    corecore