32 research outputs found

    Experimental Combat-Stress Model in Rats: Histological Examination of Effects of Amelogenesis-A Possible Measure of Diminished Vagal Tone Episodes

    Get PDF
    Developmental defects of enamel-stress histomarker rings (accentuated striae) may be a potential measure of diminished vagal tone in research on extreme stress such as exposure to combat. To develop an animal model of this measure, we examined the enamel of rat incisors which erupt continuously. We examined incisors from 15 stressed-colony rats and 7 control-rats for these histomarkers using the Visible Burrow System (VBS). VBS was developed to study combat stress in rats. No stress rings were found in any of the rat incisors examined. In contrast to humans, rats have likely evolved to prioritize incisor strength during combat stress. Studies of amelogenesis during combat stress in other rodents with continuously growing incisors are warranted. Laboratory animals such as rabbits or marmosets may be especially suitable, since they less frequently use their incisors for self defense

    Why are anopheline mosquitoes not present in the Seychelles?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Species of anopheline mosquitoes are largely distributed over emerged lands around the world and, within the tropics, few areas are without these insects, which are vectors of malaria parasites. Among the exceptions is the Seychelles archipelago in the western Indian Ocean. However, in the Aldabra island group, located in the extreme western portion of the archipelago, <it>Anopheles gambiae s.l. </it>was introduced, leading to massive proliferation and then elimination, with the most recent autochthonous malaria cases recorded in 1931.</p> <p>Methods</p> <p>In order to re-examine the absence of anopheline mosquitoes in the Seychelles, an entomological field survey was conducted in December 2008 at 17 sites on four granitic islands, including Mahé and Praslin, and ten sites on coralline atolls in the extreme west, including Aldabra.</p> <p>Results</p> <p>No evidence of larval or adult anophelines was found at the surveyed sites, which supports their absence in the Seychelles.</p> <p>Conclusions</p> <p>In the granitic islands of the Seychelles, the climate is favourable for anophelines. However, these islands are protected by their remoteness and prevailing seasonal winds. In addition, stagnant freshwater, required in anopheline larval development, is relatively uncommon on the granitic islands because of the steep slopes. In the southwestern atolls (Aldabra and Providence-Farquhar groups), the presence of a long dry season of up to nine months and the total absence of permanent natural freshwater prevents the breeding of anophelines and their successful colonization. The Seychelles does not have any native land mammals and like in other parts of the world (Antarctica, Iceland, New Caledonia, Central Pacific islands) their absence is associated with the lack of anophelines. This suggests an obligatory relationship for anophelines to feed on terrestrial mammals, without alternative for blood-feeding sources, such as bats, birds and reptiles.</p

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    corecore