1,692 research outputs found

    Enzyme Activity and Biomolecule Templating at Liquid and Solid Interfaces

    Get PDF
    There are two main components of this research program. The first involves studies of the adsorption and catalytic activity of proteins at fluid-fluid and fluid-solid interfaces; the second employs biological macromolecules as templates at the solid-liquid interface for controlled crystallization of inorganic materials, to provide materials with specific functionality

    Spatial distribution of bacteria associated with the marine sponge Tethya californiana

    Get PDF
    Microbial diversity and spatial distribution of the diversity within tissue of the marine sponge Tethya californiana was analyzed based on 16S rRNA gene sequences. One candidate division and nine bacterial phyla were detected, including members of all five subdivisions of Proteobacteria. Moreover, chloroplast-derived Stramenopiles- and Rhodophyta-affiliated 16S rRNA gene sequences were found and Stramenopiles represented the most abundant clones (30%) in the clone library. On the phylum-level, the microbial fingerprint of T. californiana showed a similar pattern as its Mediterranean relative T. aurantium. An interesting difference was that Cyanobacteria that were abundantly present in T. aurantium were not found in T. californiana, but that the latter sponges harbored phototrophic Stramenopiles instead. Surprisingly, the phototrophic microorganisms were evenly distributed over the inner and outer parts of the sponge tissue, which implies that they also reside in regions without direct light exposure. The other phyla were also present in both the outer cortex and the mesohyl of the sponges. These results were confirmed by analysis on the operational taxonomic unit level. This leads to the conclusion that from a qualitative point of view, spatial distribution of microorganisms in T. californiana tissue is quite homogeneous. Thirty-two percent of the operational taxonomic units shared less than 95% similarity with any other known sequence. This indicates that marine sponges are a rich source of previously undetected microbial life

    Bulletin No. 273 - Drainage and Irrigation, Soil, Economic, and Social Conditions, Delta Area, Utah, Division 3: Economic Conditions

    Get PDF
    Project 90-A Study of Factors Influencing the Financial Condition of Certain Utah Irrigation and Drainage Projects-was undertaken in 1928 as an intensified study of local areas. This study was divided among four departments, with a project leader for each particular phase of the study. These four project leaders, guided by the Station Director, have constituted a committee in immediate charge of this project. Subprojects and their respective leaders have been: A-Engineering and Engineering Economic Aspects, O. W. Israelsen; B-Soil Productivity Aspects, D. S. Jennings; C-Contributing Sociological Aspects, J. A. Geddes; and D-Economic Aspects, W. Preston Thomas

    BOOK REVIEW

    Get PDF

    Time-domain THz spectroscopy reveals coupled protein-hydration dielectric response in solutions of native and fibrils of human lyso-zyme

    Full text link
    Here we reveal details of the interaction between human lysozyme proteins, both native and fibrils, and their water environment by intense terahertz time domain spectroscopy. With the aid of a rigorous dielectric model, we determine the amplitude and phase of the oscillating dipole induced by the THz field in the volume containing the protein and its hydration water. At low concentrations, the amplitude of this induced dipolar response decreases with increasing concentration. Beyond a certain threshold, marking the onset of the interactions between the extended hydration shells, the amplitude remains fixed but the phase of the induced dipolar response, which is initially in phase with the applied THz field, begins to change. The changes observed in the THz response reveal protein-protein interactions me-diated by extended hydration layers, which may control fibril formation and may have an important role in chemical recognition phenomena

    Next-generation biomass feedstocks for biofuel production

    Get PDF
    A review of the potential for biofuel production in the United States from timber and non-grain crops

    Bulletin No. 325 - An Economic Study of Sheep Production in Southwestern Utah

    Get PDF
    Range sheep production has been one of the major agricultural enterprises in Utah, particularly in the southwestern part of the state, since these areas were first settled. Stock sheep numbers in Utah were about 2,100,000 by 1890, which is approximately the present number in the state. Since 1890 the numbers have fluctuated between 2,000,000 and 2,775,000. This important industry has, from the time of its introduction, been closely associated with the use of public range lands. The unrestricted grazing of public range lands resulted in damage to a considerable area and was one of the important factors that led to the establishment of federal agencies to administer these properties

    Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures.

    Get PDF
    BackgroundTrichoderma reesei is a key cellulase source for economically saccharifying cellulosic biomass for the production of biofuels. Lignocellulose hydrolysis at temperatures above the optimum temperature of T. reesei cellulases (~50°C) could provide many significant advantages, including reduced viscosity at high-solids loadings, lower risk of microbial contamination during saccharification, greater compatibility with high-temperature biomass pretreatment, and faster rates of hydrolysis. These potential advantages motivate efforts to engineer T. reesei cellulases that can hydrolyze lignocellulose at temperatures ranging from 60-70°C.ResultsA B-factor guided approach for improving thermostability was used to engineer variants of endoglucanase I (Cel7B) from T. reesei (TrEGI) that are able to hydrolyze cellulosic substrates more rapidly than the recombinant wild-type TrEGI at temperatures ranging from 50-70°C. When expressed in T. reesei, TrEGI variant G230A/D113S/D115T (G230A/D113S/D115T Tr_TrEGI) had a higher apparent melting temperature (3°C increase in Tm) and improved half-life at 60°C (t1/2 = 161 hr) than the recombinant (T. reesei host) wild-type TrEGI (t1/2 = 74 hr at 60°C, Tr_TrEGI). Furthermore, G230A/D113S/D115T Tr_TrEGI showed 2-fold improved activity compared to Tr_TrEGI at 65°C on solid cellulosic substrates, and was as efficient in hydrolyzing cellulose at 60°C as Tr_TrEGI was at 50°C. The activities and stabilities of the recombinant TrEGI enzymes followed similar trends but differed significantly in magnitude depending on the expression host (Escherichia coli cell-free, Saccharomyces cerevisiae, Neurospora crassa, or T. reesei). Compared to N.crassa-expressed TrEGI, S. cerevisiae-expressed TrEGI showed inferior activity and stability, which was attributed to the lack of cyclization of the N-terminal glutamine in Sc_TrEGI and not to differences in glycosylation. N-terminal pyroglutamate formation in TrEGI expressed in S. cerevisiae was found to be essential in elevating its activity and stability to levels similar to the T. reesei or N. crassa-expressed enzyme, highlighting the importance of this ubiquitous modification in GH7 enzymes.ConclusionStructure-guided evolution of T. reesei EGI was used to engineer enzymes with increased thermal stability and activity on solid cellulosic substrates. Production of TrEGI enzymes in four hosts highlighted the impact of the expression host and the role of N-terminal pyroglutamate formation on the activity and stability of TrEGI enzymes
    corecore