2 research outputs found

    Leg Vascular Responsiveness During Acute Orthostasis Following Simulated Weightlessness

    Get PDF
    Ten men (35-49 years old) underwent lower body negative pressure (LBNP) exposures before and offer 10 d of continuous 6 degrees head-down bedrest in order to predict the effect of weightlessness on the responsiveness of leg vasculature to an orthostatic stress. Heart rate (HR), mean arterial blood pressure (MAP), and Impedance rheographic indices of arterial pulse volume (APV) of the legs were measured during rest and at 1 min at -30 mm Hg LBNP. Bedrest-induced deconditioning was manifested by decreases (p less than 0.06) in plasma volume (17%), peak oxygen uptake (16%), and LBNP tolerance (17%). Resting HR was unchanged after bedrest, but HR was higher (p less than 0.05) at 1 min of -30 mm Hg LBNP after, compared with before bedrest. Responses of MAP to -30 mm Hg LBNP were not altered by bodrest. Resting APV was decreased (p less than 0.05) by simulated weightlessness. However, APV was reduced (p less than 0.05) from rest to 1 min -30 mm Hg LBNP by the same relative magnitude before and after bodrest (-21.4 +/- 3.4% and -20.5 +/- 2.7%, respectively). We conclude that peripheral arterial vasoconstriction, as indicated by reductions in APV during LBNP, was not affected by bedrest. These results suggest that there was no apparent alteration in responsiveness of the leg vasculature following simulated weightlessness. Therefore, it appears unlikely that control mechanisms of peripheral resistance contribute significantly to reduced orthostatic tolerance following space-flight
    corecore