342 research outputs found

    Nutrient Disorders of Sweet Potato

    Get PDF

    Nutritional Disorders of Sunflower

    Get PDF

    Trauma

    Get PDF
    N/

    A Simplified, Sequential, Phosphorus Fractionation Method

    Get PDF
    Hedley et al. (1982) developed what has become the most widely used (and modified), phosphorus (P) fractionation technique. It consists of sequential extraction of increasingly less phytoavailable P pools. Extracts are centrifuged at up to 25000 g (RCF) and filtered to 0.45 μm to ensure that soil is not lost between extractions. In attempting to transfer this method to laboratories with limited facilities, it was considered that access to high-speed centrifuges, and the cost of frequent filtration may prevent adoption of this P fractionation technique. The modified method presented here was developed to simplify methodology, reduce cost, and therefore increase accessibility of P fractionation technology. It provides quantitative recovery of soil between extractions, using low speed centrifugation without filtration. This is achieved by increasing the ionic strength of dilute extracts, through the addition of NaCl, to flocculate clay particles. Addition of NaCl does not change the amount of P extracted. Flocculation with low speed centrifugation produced extracts comparable with those having undergone filtration (0.025 μm). A malachite green colorimetric method was adopted for inorganic P determination, as this simple manual method provides high sensitivity with negligible interference from other anions. This approach can also be used for total P following digestion, alternatively non-discriminatory methods, such as inductively coupled plasma atomic emission spectroscopy, may be employed

    Rhizotoxicity of aluminate and polycationic aluminium at high pH

    Get PDF
    Although monomeric Al species are often toxic in acidic soils, the effects of the aluminate ion (Al(OH)4-) on roots grown in alkaline media are still unclear. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of Al(OH)4- on root growth of mungbean (Vigna radiata L.). Root growth was reduced by 13 % after 3 d growth in solutions with an Al(OH)4- activity of 16 μM and no detectable polycationic Al (Al13). This decrease in root growth was associated with the formation of lesions on the root tips (due to the rupturing of the epidermal and outer cortical cells) and a slight limitation to root hair growth (particularly on the lateral roots). When roots displaying these symptoms were transferred to fresh Al(OH)4- solutions for a further 12 h, no root tip lesions were observed and root hair growth on the lateral roots improved. The symptoms were similar to those induced by Al13 at concentrations as low as 0.50 μM Al which are below the detection limit of the ferron method. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots

    Toxic effects of Pb2+ on the growth and mineral nutrition of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana)

    Get PDF
    Although grasses are commonly used to revegetate sites contaminated with lead (Pb), little is known regarding the Pb-tolerance of many of these species. Using dilute solution culture to mimic the soil solution, the growth of signal grass (Brachiaria decumbens Stapf cv. Basilisk) and Rhodes grass (Chloris gayana Kunth cv. Pioneer) was related to the mean activity of Pb2+ {Pb2+} in solution. There was a 50% reduction in fresh mass of signal grass shoots at 5 mu M {Pb2+} and at 3 mu M {Pb2+} for the roots. Rhodes grass was considerably more sensitive to Pb in solution, with shoot and root fresh mass being reduced by 50% at 0.5 mu M {Pb2+}. The higher tolerance of signal grass to Pb appeared to result from the internal detoxification of Pb, rather than from the exclusion of Pb from the root. At toxic {Pb2+}, an interveinal chlorosis developed in the shoots of signal grass (possibly a Pb-induced Mn deficiency), whilst in Rhodes grass, Pb2+ caused a bending of the root tips and the formation of a swelling immediately behind some of the root apices. Root hair growth did not appear to be reduced by Pb2+ in solution, being prolific at all {Pb2+} in both species
    • …
    corecore