22,045 research outputs found
Rare b hadron decays at the LHC
With the completion of Run~I of the CERN Large Hadron Collider, particle
physics has entered a new era. The production of unprecedented numbers of
heavy-flavoured hadrons in high energy proton-proton collisions allows detailed
studies of flavour-changing processes. The increasingly precise measurements
allow to probe the Standard Model with a new level of accuracy. Rare hadron
decays provide some of the most promising approaches for such tests, since
there are several observables which can be cleanly interpreted from a
theoretical viewpoint. In this article, the status and prospects in this field
are reviewed, with a focus on precision measurements and null tests.Comment: Invited review for Annual Reviews of Nuclear and Particle Physics. v2
as publishe
Emissions of Volatile Organic Compounds Inferred From Airborne Flux Measurements over a Megacity
Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1&plusmn;4.0 mg/m<sup>2</sup>/h and 4.7&plusmn;2.3 mg/m<sup>2</sup>/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m<sup>2</sup>/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g) including the International airport (e.g. 3–5 g/g) and a mean flux (concentration) ratio of 3.2&plusmn;0.5 g/g (3.9&plusmn;0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH<sub>3</sub>CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%)
Comparison of submillimeter and ultraviolet observations of neutral carbon toward Zeta Ophiuchi
We have observed the ^3P_1 → ^3P_0 ground state transition of C_I emission toward ζ Oph. We compare this observation with predictions made from Copernicus ultraviolet absorption measurements of the population of the ^3P_1 level and with millimeter wave observations of CO
Hierarchical Bayesian Modeling of Hitting Performance in Baseball
We have developed a sophisticated statistical model for predicting the
hitting performance of Major League baseball players. The Bayesian paradigm
provides a principled method for balancing past performance with crucial
covariates, such as player age and position. We share information across time
and across players by using mixture distributions to control shrinkage for
improved accuracy. We compare the performance of our model to current
sabermetric methods on a held-out season (2006), and discuss both successes and
limitations
First detection of the ground-state J_K = 1_0 → 0_0 submillimeter transition of interstellar ammonia
The J_K = 1_0 → 0_0 transition of ammonia at 572.5 GHz has been detected in OMC-1 from NASA's Kuiper Airborne Observatory. The central velocity of the line (V_(LSR)≈ 9 km s^(-1)) indicates that it originates in the molecular cloud material, not in the hot core. The derived filling factor of ≳ 0.09 in a 2' beam implies a source diameter of ≳ 35" if it is a single clump. This clump area is much larger than that derived from observations of the 1_1 inversion transition. The larger optical depth in the
1_0 → 0_0 transition (75-350) can account for the increased source area and line width as compared
with those seen in the 1_1 inversion transition
A Line Survey of Orion KL from 325 to 360 GHz
We present a high-sensitivity spectral line survey of the high-mass star-forming region Orion KL in the 325-360 GHz frequency band. The survey was conducted at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. The sensitivity achieved is typically 0.1-0.5 K and is limited mostly by the sideband separation method utilized. We find 717 resolvable features consisting of 1004 lines, among which 60 are unidentified. The identified lines are due to 34 species and various isotopomers. Most of the unidentified lines are weak, and many of them most likely due to isotopomers or vibrationally or torsionally excited states of known species with unknown line frequencies, but a few reach the 2-5 K level. No new species have been identified, but we were able to strengthen evidence for the identification of ethanol in Orion and found the first nitrogen sulfide line in this source. The molecule dominating the integrated line emission is SO_2, which emits twice the intensity of CO, followed by SO, which is only slightly stronger than CO. In contrast, the largest number of lines is emitted from heavy organic rotors like HCOOCH_3, CH_3CH_2CN, and CH_3OCH_3, but their contribution to the total flux is unimportant. CH_3OH is also very prominent, both in the number of lines and in integrated flux. An interesting detail of this survey is the first detection of vibrationally excited HCN in the v_2 = 2 state, 2000 K above ground. Clearly this is a glimpse into the very inner part of the Orion hot core
Impact of Asian continental outflow on the concentrations of O3, CO, NMHCs and halocarbons on Jeju Island, South Korea during March 2005
As part of ABC-EAREX2005 experiment, numerous trace gases were measured at Gosan on Jeju Island, South Korea in March 2005 to characterize the impact of recent outflow from the Asian continent and to inter-compare measurement techniques used by participating groups. Here we present measurements of O3, CO, and whole air samples of methane, C2-C8 non-methane hydrocarbons (NMHCs) and C1-C2 halocarbons obtained during the study. The large temporal variations in the measured trace gas concentrations at Gosan were due to the transport of background marine air and of regional pollution mainly from the Chinese subcontinent. Average mixing ratios (± s.d.) were 54.6 (± 9.0) ppbv and 283 (± 100) ppbv for O3 and CO, respectively. CO showed good correlations (r2 = 0.62-0.81) with combustion tracers such as ethyne and benzene but poorly correlated (r2 = 0.11-0.29) with light alkanes, suggesting that the latter were contributed by non-combustion source(s). Back trajectory analysis showed that air masses mainly originated from the North China Plains and northeastern China, which together accounted for 64% of the total trajectories. The highest mean mixing ratios of O3 and combustion-derived species were found in air masses from eastern China and Korea, indicating the significant impact of emissions from these regions. Interestingly, air masses from northeast China contained elevated levels of light alkanes and the smallest ratios of ethyne/propane and benzene/propane among the air-mass groups, suggesting contribution from natural gas leakage in the upwind region, possibly from Siberia. © 2007 Elsevier Ltd. All rights reserved
- …
