96 research outputs found

    Dimensionless cosmology

    Full text link
    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant GG is entirely dimensionful. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of Big Bang Neucleosynthesis and recombination in a dimensionless manner. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any {\it one} of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding GG to the usual cosmological parameter set

    Snipe taxonomy based on vocal and non-vocal sound displays: the South American Snipe is two species

    Get PDF
    We analysed breeding sounds of the two subspecies of South American Snipe Gallinago paraguaiae paraguaiae and Gallinago paraguaiae magellanica to determine whether they might be different species: loud vocalizations given on the ground, and the tail‐generated Winnow given in aerial display. Sounds of the two taxa differ qualitatively and quantitatively. Both taxa utter two types of ground call. In G. p. paraguaiae, the calls are bouts of identical sound elements repeated rhythmically and slowly (about five elements per second (Hz)) or rapidly (about 11 Hz). One call of G. p. magellanica is qualitatively similar to those of G. p. paraguaiae but sound elements are repeated more slowly (about 3 Hz). However, its other call type differs strikingly: it is a bout of rhythmically repeated sound couplets, each containing two kinds of sound element. The Winnow of G. p. paraguaiae is a series of sound elements that gradually increase in duration and energy; by contrast, that of G. p. magellanica has two or more kinds of sound element that roughly alternate and are repeated as sets, imparting a stuttering quality. Sounds of the related Puna Snipe (Gallinago andina) resemble but differ quantitatively from those of G. p. paraguaiae. Differences in breeding sounds of G. p. paraguaiae and G. p. magellanica are strong and hold throughout their geographical range. Therefore we suggest that the two taxa be considered different species: G. paraguaiae east of the Andes in much of South America except Patagonia, and G. magellanica in central and southern Chile, Argentina east of the Andes across Patagonia, and Falklands/Malvinas.Fil: Miller, Edward H.. Memorial University Of Newfoundland; CanadĂĄFil: Areta, Juan Ignacio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Jaramillo, Alvaro. San Francisco Bay Bird Observatory; Estados UnidosFil: Imberti, Santiago. AsociaciĂłn Ambiente Sur, Rio Gallegos; ArgentinaFil: Matus, Ricardo. KilĂłmetro 7 Sur; Chil
    • 

    corecore