574 research outputs found
Effect of temperature on the preclimacteric life of bananas
Few investigations have been conducted which attempt to define the effect of temperature on the duration of the preclimacteric or post-climacteric respiratory phases. Over the range 60-96° F, the green life of cv. Mons Mari was logarithmically related to temperature. This is in contrast to an inverse linear relationship observed previously over the range 55-71°
Some aspects of the abnormal fruit of November-flowering bananas
During February in south-eastern Queensland some peculiarly shaped bananas, referred to by the trade as "November dumps", are marketed. This fruit owes its name to the blunt and stubby flower end and to the fact that the bunches are thrown (emerge) from the plant in early November. Carpel numbers are lower in Giant Cavendish fruit in bunches emerging in early November and the fruit is thinner
Generic theory of colloidal transport
We discuss the motion of colloidal particles relative to a two component
fluid consisting of solvent and solute. Particle motion can result from (i) net
body forces on the particle due to external fields such as gravity; (ii) slip
velocities on the particle surface due to surface dissipative phenomena. The
perturbations of the hydrodynamic flow field exhibits characteristic
differences in cases (i) and (ii) which reflect different patterns of momentum
flux corresponding to the existence of net forces, force dipoles or force
quadrupoles. In the absence of external fields, gradients of concentration or
pressure do not generate net forces on a colloidal particle. Such gradients can
nevertheless induce relative motion between particle and fluid. We present a
generic description of surface dissipative phenomena based on the linear
response of surface fluxes driven by conjugate surface forces. In this
framework we discuss different transport scenarios including self-propulsion
via surface slip that is induced by active processes on the particle surface.
We clarify the nature of force balances in such situations.Comment: 22 pages, 1 figur
Modelling mucociliary clearance
Mathematical modelling of the fluid mechanics of mucociliary clearance (MCC) is reviewed and future challenges for researchers are discussed. The morphology of the bronchial and tracheal airway surface liquid (ASL) and ciliated epithelium are briefly introduced. The cilia beat cycle, beat frequency and metachronal coordination are described, along with the rheology of the mucous layer. Theoretical modelling of MCC from the late 1960s onwards is reviewed, and distinctions between ‘phenomenological’, ‘slender body theory’ and recent ‘fluid–structure interaction’ models are explained.\ud
\ud
The ASL consists of two layers, an overlying mucous layer and underlying watery periciliary layer (PCL) which bathes the cilia. Previous models have predicted very little transport of fluid in the PCL compared with the mucous layer. Fluorescent tracer transport experiments on human airway cultures conducted by Matsui et al. [Matsui, H., Randell, S.H., Peretti, S.W., Davis, C.W., Boucher, R.C., 1998. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102 (6), 1125–1131] apparently showed equal transport in both the PCL and mucous layer. Recent attempts to resolve this discrepancy by the present authors are reviewed, along with associated modelling findings. These findings have suggested new insights into the interaction of cilia with mucus due to pressure gradients associated with the flat PCL/mucus interface. This phenomenon complements previously known mechanisms for ciliary propulsion. Modelling results are related to clinical findings, in particular the increased MCC observed in patients with pseudohypoaldosteronism. Recent important advances by several groups in modelling the fluid–structure interaction by which the cilia movement and fluid transport emerge from specification of internal mechanics, viscous and elastic forces are reviewed. Finally, we discuss the limitations of existing work, and the challenges for the next generation of models, which may provide further insight into this complex and vital system
Discrete cilia modelling with singularity distributions
We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous ‘singularity models’ is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a ‘posterior tilt,’ and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 μm/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system
Drought Risk and You (DRY): case study catchments – physical characteristics and functioning
This report was produced by the Centre for Ecology & Hydrology as part of the 'Developing a drought narrative resource as a multi-stakeholder decision making utility in drought risk management' ('Drought Risk and You'; DRY) project, funded under the Research Councils UK 'UK Droughts & Water Scarcity' programme (Natural Environment Research Council grant ref. NE/L010291/1). A Work Package 3 deliverable
Recommended from our members
Novel margin management to enhance Auchenorrhyncha biodiversity in intensive grasslands
Agricultural intensification, including changes in cutting, grazing and fertilizer regimes, has led to declines in UK and NW European grassland biodiversity. We aimed to develop field margin management practices that would support invertebrate diversity and abundance on intensively managed grassland farms, focusing on planthoppers and leafhoppers (Auchenorrhyncha). Replicated across four farms in south-west England, we manipulated conventional management practices (inorganic fertilizer, cutting frequency and height, and aftermath grazing) to create seven treatments along a gradient of decreasing management intensity and increasing sward architectural complexity. Auchenorrhyncha were sampled annually between 2003 and 2005. Auchenorrhyncha abundance and species richness was highest in the most extensively managed treatments. Abundance was lowest with frequent cutting, while species richness was lowest where cattle grazing occurred. Unexpectedly, application of inorganic fertilizer had no effect on Auchenorrhyncha abundance or species richness. Management options that enhance invertebrate diversity, while allowing the remainder of the field to be managed conventionally, represent a potentially important conservation tool for many lowland improved grasslands. Extensification of conventional management in field margin areas of such grasslands are likely to benefit this numerically dominant component of grassland invertebrate fauna. These management practices have the potential to be incorporated into existing UK and European agri-environment schemes
Metachronal wave and hydrodynamic interaction for deterministic switching rowers
We employ a model system, called rowers, as a generic physical framework to
define the problem of the coordinated motion of cilia (the metachronal wave) as
a far from equilibrium process. Rowers are active (two-state) oscillators
interacting solely through forces of hydrodynamic origin. In this work, we
consider the case of fully deterministic dynamics, find analytical solutions of
the equation of motion in the long wavelength (continuum) limit, and
investigate numerically the short wavelength limit. We prove the existence of
metachronal waves below a characteristic wavelength. Such waves are unstable
and become stable only if the sign of the coupling is reversed. We also find
that with normal hydrodynamic interaction the metachronal pattern has the form
of stable trains of traveling wave packets sustained by the onset of
anti-coordinated beating of consecutive rowers.Comment: 11 pages, 7 figure
Generic flow profiles induced by a beating cilium
We describe a multipole expansion for the low Reynolds number fluid flows
generated by a localized source embedded in a plane with a no-slip boundary
condition. It contains 3 independent terms that fall quadratically with the
distance and 6 terms that fall with the third power. Within this framework we
discuss the flows induced by a beating cilium described in different ways: a
small particle circling on an elliptical trajectory, a thin rod and a general
ciliary beating pattern. We identify the flow modes present based on the
symmetry properties of the ciliary beat.Comment: 12 pages, 6 figures, to appear in EPJ
Inducing safer oblique trees without costs
Decision tree induction has been widely studied and applied. In safety applications, such as determining whether a chemical process is safe or whether a person has a medical condition, the cost of misclassification in one of the classes is significantly higher than in the other class. Several authors have tackled this problem by developing cost-sensitive decision tree learning algorithms or have suggested ways of changing the
distribution of training examples to bias the decision tree learning process so as to take account of costs. A prerequisite for applying such algorithms is the availability of costs of misclassification.
Although this may be possible for some applications, obtaining reasonable estimates of costs of misclassification is not easy in the area of safety.
This paper presents a new algorithm for applications where the cost of misclassifications cannot be quantified, although the cost of misclassification in one class is known to be significantly higher than in another class. The algorithm utilizes linear discriminant analysis to identify oblique relationships between continuous attributes and then carries out an appropriate modification to ensure that the resulting tree errs on the side of safety. The algorithm is evaluated with respect to one of the best known cost-sensitive algorithms (ICET), a well-known oblique decision tree algorithm (OC1) and an algorithm that utilizes robust linear programming
- …