201 research outputs found

    On the origin of H2CO abundance enhancements in low-mass protostars

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Enhanced histamine-induced itch in diacylglycerol kinase iota knockout mice

    Get PDF
    Subsets of small-diameter dorsal root ganglia (DRG) neurons detect pruritogenic (itch-causing) and algogenic (pain-causing) stimuli and can be activated or sensitized by chemical mediators. Many of these chemical mediators activate receptors that are coupled to lipid hydrolysis and diacylglycerol (DAG) production. Diacylglycerol kinase iota (DGKI) can phos-phorylate DAG and is expressed at high levels in small-diameter mouse DRG neurons. Given the importance of these neurons in sensing pruritogenic and algogenic chemicals, we sought to determine if loss of DGKI impaired responses to itch- or pain-producing stimuli. Using male and female Dgki-knockout mice, we found that in vivo sensitivity to histamine—but not other pruritogens—was enhanced. In contrast, baseline pain sensitivity and pain sensitization following inflammatory or neuropathic injury were equivalent between wild type and Dgki-/- mice. In vitro calcium responses in DRG neurons to histamine was enhanced, while responses to algogenic ligands were unaffected by Dgki deletion. These data suggest Dgki regulates sensory neuron and behavioral responses to histamine, without affecting responses to other pruritogenic or algogenic agents

    Spinal macrophages resolve nociceptive hypersensitivity after peripheral injury

    Get PDF
    Peripheral nerve injury induces long-term pro-inflammatory responses in spinal cord glial cells that facilitate neuropathic pain, but the identity of endogenous cells that resolve spinal inflammation has not been determined. Guided by single-cell RNA sequencing (scRNA-seq), we found that MRC1+ spinal cord macrophages proliferated and upregulated the anti-inflammatory mediator Cd163 in mice following superficial injury (SI; nerve intact), but this response was blunted in nerve-injured animals. Depleting spinal macrophages in SI animals promoted microgliosis and caused mechanical hypersensitivity to persist. Conversely, expressing Cd163 in spinal macrophages increased Interleukin 10 expression, attenuated micro- and astrogliosis, and enduringly alleviated mechanical and thermal hypersensitivity in nerve-injured animals. Our data indicate that MRC1+ spinal macrophages actively restrain glia to limit neuroinflammation and resolve mechanical pain following a superficial injury. Moreover, we show that spinal macrophages from nerve-injured animals mount a dampened anti-inflammatory response but can be therapeutically coaxed to promote long-lasting recovery of neuropathic pain

    Novel sources of Flavor Changed Neutral Currents in the 331RHN331_{RHN} model

    Full text link
    Sources of Flavor Changed Neutral Currents (FCNC) naturally emerge from a well motivated framework called 3-3-1 with right-handed neutrinos model, 331RHN331_{RHN} for short, mediated by an extra neutral gauge boson ZZ^{\prime}. Following previous works we calculate these sources and in addition we derive new ones coming from CP-even and -odd neutral scalars which appear due to their non-diagonal interactions with the physical standard quarks. Furthermore we show that bounds related to the neutral mesons systems KLKSK_L-K_S and D10D20D_1^0 - D_2^0 may be significantly strengthened in the presence of these new interactions allowing us to infer stronger constraints on the parameter space of the model.Comment: Published version. 10 pages, 6 figure
    corecore