4 research outputs found

    Unravelling the complex mechanisms of transgenerational epigenetic inheritance.

    Get PDF
    There are numerous benefits to elucidating how our environment affects our health: from a greater understanding of adaptation to disease prevention. Evidence shows that stressors we are exposed to during our lifetime might cause disease in our descendants. Transgenerational epigenetic inheritance involves the transmission of 'information' over multiple generations via the gametes independent of the DNA base sequence. Despite extensive research, the epigenetic mechanisms remain unclear. Analysis of model organisms exposed to environmental insults (e.g., diet manipulation, stress, toxin exposure) or carrying mutations in the epigenetic regulatory machinery indicates that inheritance of altered DNA methylation, histone modifications, or non-coding RNAs are key mechanisms. Tracking inherited epigenetic information and its effects for multiple generations is a significant challenge to overcome.G.E.T.B. is supported by a studentship from the Wellcome Trust 4-year PhD programme in Developmental Mechanisms. E.D.W. is a Lister Research Prize fellow and was supported by an Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge joint research grant.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.cbpa.2016.06.00

    Variably methylated retrotransposons are refractory to a range of environmental perturbations.

    No full text
    The agouti viable yellow (Avy) allele is an insertional mutation in the mouse genome caused by a variably methylated intracisternal A particle (VM-IAP) retrotransposon. Avy expressivity is sensitive to a range of early-life chemical exposures and nutritional interventions, suggesting that environmental perturbations can have long-lasting effects on the methylome. However, the extent to which VM-IAP elements are environmentally labile with phenotypic implications is unknown. Using a recently identified repertoire of VM-IAPs, we assessed the epigenetic effects of different environmental contexts. A longitudinal aging analysis indicated that VM-IAPs are stable across the murine lifespan, with only small increases in DNA methylation detected for a subset of loci. No significant effects were observed after maternal exposure to the endocrine disruptor bisphenol A, an obesogenic diet or methyl donor supplementation. A genetic mouse model of abnormal folate metabolism exhibited shifted VM-IAP methylation levels and altered VM-IAP-associated gene expression, yet these effects are likely largely driven by differential targeting by polymorphic KRAB zinc finger proteins. We conclude that epigenetic variability at retrotransposons is not predictive of environmental susceptibility
    corecore