15 research outputs found
JIMWLK evolution in the Gaussian approximation
We demonstrate that the Balitsky-JIMWLK equations describing the high-energy
evolution of the n-point functions of the Wilson lines (the QCD scattering
amplitudes in the eikonal approximation) admit a controlled mean field
approximation of the Gaussian type, for any value of the number of colors Nc.
This approximation is strictly correct in the weak scattering regime at
relatively large transverse momenta, where it reproduces the BFKL dynamics, and
in the strong scattering regime deeply at saturation, where it properly
describes the evolution of the scattering amplitudes towards the respective
black disk limits. The approximation scheme is fully specified by giving the
2-point function (the S-matrix for a color dipole), which in turn can be
related to the solution to the Balitsky-Kovchegov equation, including at finite
Nc. Any higher n-point function with n greater than or equal to 4 can be
computed in terms of the dipole S-matrix by solving a closed system of
evolution equations (a simplified version of the respective Balitsky-JIMWLK
equations) which are local in the transverse coordinates. For simple
configurations of the projectile in the transverse plane, our new results for
the 4-point and the 6-point functions coincide with the high-energy
extrapolations of the respective results in the McLerran-Venugopalan model. One
cornerstone of our construction is a symmetry property of the JIMWLK evolution,
that we notice here for the first time: the fact that, with increasing energy,
a hadron is expanding its longitudinal support symmetrically around the
light-cone. This corresponds to invariance under time reversal for the
scattering amplitudes.Comment: v2: 45 pages, 4 figures, various corrections, section 4.4 updated, to
appear in JHE
CGC, Hydrodynamics, and the Parton Energy Loss
Hadron spectra in Au+Au collisions at RHIC are calculated by hydrodynamics
with initial conditions from the Color Glass Condensate (CGC). Minijet
components with parton energy loss in medium are also taken into account by
using parton density obtained from hydrodynamical simulations. We found that
CGC provides a good initial condition for hydrodynamics in Au+Au collisions at
RHIC.Comment: Quark Matter 2004 contribution, 4 pages, 2 figure
What is the Evidence for the Color Glass Condensate?
I introduce the concept of the Color Glass Condensate. I review data from
HERA and RHIC which suggest that such a universal form of matter has been
found
Regge Field Theory in zero transverse dimensions: loops versus "net" diagrams
Toy models of interacting Pomerons with triple and quaternary Pomeron
vertices in zero transverse dimension are investigated. Numerical solutions for
eigenvalues and eigenfunctions of the corresponding Hamiltonians are obtained,
providing the quantum solution for the scattering amplitude in both models. The
equations of motion for the Lagrangians of the theories are also considered and
the classical solutions of the equations are found. Full two-point Green
functions ("effective" Pomeron propagator) and amplitude of diffractive
dissociation process are calculated in the framework of RFT-0 approach. The
importance of the loops contribution in the amplitude at different values of
the model parameters is discussed as well as the difference between the models
with and without quaternary Pomeron vertex.Comment: 34 pages, 36 figure
QCD at small x and nucleus-nucleus collisions
At large collision energy sqrt(s) and relatively low momentum transfer Q, one
expects a new regime of Quantum Chromo-Dynamics (QCD) known as "saturation".
This kinematical range is characterized by a very large occupation number for
gluons inside hadrons and nuclei; this is the region where higher twist
contributions are as large as the leading twist contributions incorporated in
collinear factorization. In this talk, I discuss the onset of and dynamics in
the saturation regime, some of its experimental signatures, and its
implications for the early stages of Heavy Ion Collisions.Comment: Plenary talk given at QM2006, Shanghai, November 2006. 8 pages, 8
figure
Limiting fragmentation in hadron-hadron collisions at high energies
Limiting fragmentation in proton-proton, deuteron-nucleus and nucleus-nucleus
collisions is analyzed in the framework of the Balitsky-Kovchegov equation in
high energy QCD. Good agreement with experimental data is obtained for a wide
range of energies. Further detailed tests of limiting fragmentation at RHIC and
the LHC will provide insight into the evolution equations for high energy QCD.Comment: 28 pages, 10 figures (2 new figures, text slightly expanded, and some
additional references