975 research outputs found

    Building Merger Trees from Cosmological N-body Simulations

    Full text link
    Although a fair amount of work has been devoted to growing Monte-Carlo merger trees which resemble those built from an N-body simulation, comparatively little effort has been invested in quantifying the caveats one necessarily encounters when one extracts trees directly from such a simulation. To somewhat revert the tide, this paper seeks to provide its reader with a comprehensive study of the problems one faces when following this route. The first step to building merger histories of dark matter haloes and their subhaloes is to identify these structures in each of the time outputs (snapshots) produced by the simulation. Even though we discuss a particular implementation of such an algorithm (called AdaptaHOP) in this paper, we believe that our results do not depend on the exact details of the implementation but extend to most if not all (sub)structure finders. We then highlight different ways to build merger histories from AdaptaHOP haloes and subhaloes, contrasting their various advantages and drawbacks. We find that the best approach to (sub)halo merging histories is through an analysis that goes back and forth between identification and tree building rather than one which conducts a straightforward sequential treatment of these two steps. This is rooted in the complexity of the merging trees which have to depict an inherently dynamical process from the partial temporal information contained in the collection of instantaneous snapshots available from the N-body simulation.Comment: 19 pages, 28 figure

    Triplon mean-field analysis of an antiferromagnet with degenerate Shastry-Sutherland ground states

    Full text link
    We look into the quantum phase diagram of a spin-12\frac{1}{2} antiferromagnet on the square lattice with degenerate Shastry-Sutherland ground states, for which only a schematic phase diagram is known so far. Many exotic phases were proposed in the schematic phase diagram by the use of exact diagonalization on very small system sizes. In our present work, an important extension of this antiferromagnet is introduced and investigated in the thermodynamic limit using triplon mean-field theory. Remarkably, this antiferromagnet shows a stable plaquette spin-gapped phase like the original Shastry-Sutherland antiferromagnet, although both of these antiferromagnets differ in the Hamiltonian construction and ground state degeneracy. We propose a sublattice columnar dimer phase which is stabilized by the second and third neighbor antiferromagnetic Heisenberg exchange interactions. There are also some commensurate and incommensurate magnetically ordered phases, and other spin-gapped phases which find their places in the quantum phase diagram. Mean-field results suggest that there is always a level-crossing phase transition between two spin gapped phases, whereas in other situations, either a level-crossing or a continuous phase transition happens

    Non-Abelian Excitations of the Quark-Gluon Plasma

    Full text link
    We present new, non-abelian, solutions to the equations of motion which describe the collective excitations of a quark-gluon plasma at high temperature. These solutions correspond to spatially uniform color oscillations.Comment: 8 pages LaTex, 1 figure (not included; available upon request), Saclay preprint T94/0

    Exact Calculation of Ring Diagrams and the Off-shell Effect on the Equation of State

    Full text link
    The partition function with ring diagrams at finite temperature is exactly caluclated by using contour integrals in the complex energy plane. It contains a pole part with temperature and momentum dependent mass and a phase shift part induced by off-shell effect in hot medium. The thermodynamic potentials for ϕ4\phi^4 and ϕ3\phi^3 interactions are calculated and compared with the quasi-particle (pole) approximation. It is found that the off-shell effect on the equation of state is remarkable.Comment: 7 pages, 11 figures, refereces added, final version to appear in PR

    Quantum criticality in a generalized Dicke model

    Get PDF
    We employ a generalized Dicke model to study theoretically the quantum criticality of an extended two-level atomic ensemble interacting with a single-mode quantized light field. Effective Hamiltonians are derived and diagonalized to investigate numerically their eigenfrequencies for different quantum phases in the system. Based on the analysis of the eigenfrequencies, an intriguing quantum-phase transition from a normal phase to a superradiant phase is revealed clearly, which is quite different from that observed with a standard Dicke model.Comment: 6 pages, 3 figure

    Towards the Equation of State of Classical SU(2) Lattice Gauge Theory

    Get PDF
    We determine numerically the full complex Lyapunov spectrum of SU(2) Yang-Mills fields on a 3-dimensional lattice from the classical chaotic dynamics. The equation of state, S(E), is determined from the Kolmogorov-Sinai entropy extrapolated to the large size limit.Comment: 12 pages, 8 PS figures, LaTe

    Intrinsic-Density Functionals

    Get PDF
    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals.Comment: 15 page

    On interacting fermions and bosons with definite total momentum

    Full text link
    Any {\it exact} eigenstate with a definite momentum of a many-body Hamiltonian can be written as an integral over a {\it symmetry-broken} function Φ\Phi. For two particles, we solve the problem {\it exactly} for all energy levels and any inter-particle interaction. Especially for the ground-state, Φ\Phi is given by the simple Hartree-Fock/Hartree ansatz for fermions/bosons. Implications for several and many particles as well as a numerical example are provided

    A new description of motion of the Fermionic SO(2N+2) top in the classical limit under the quasi-anticommutation relation approximation

    Full text link
    The boson images of fermion SO(2N+1) Lie operators have been given together with those of SO(2N+2) ones. The SO(2N+1) Lie operators are generators of rotation in the (2N+1)-dimensional Euclidian space (N: number of single-particle states of the fermions). The images of fermion annihilation-creation operators must satisfy the canonical anti-commutation relations, when they operate on a spinor subspace. In the regular representation space we use a boson Hamiltonian with Lagrange multipliers to select out the spinor subspace. Based on these facts, a new description of a fermionic SO(2N+2) top is proposed. From the Heisenberg equations of motions for the boson operators, we get the SO(2N+1) self-consistent field (SCF) Hartree-Bogoliubov (HB) equation for the classical stationary motion of the fermion top. Decomposing an SO(2N+1) matrix into matrices describing paired and unpaired modes of fermions, we obtain a new form of the SO(2N+1) SCF equation with respect to the paired-mode amplitudes. To demonstrate the effectiveness of the new description based on the bosonization theory, the extended HB eigenvalue equation is applied to a superconducting toy-model which consists of a particle-hole plus BCS type interaction. It is solved to reach an interesting and exciting solution which is not found in the traditional HB eigenvalue equation, due to the unpaired-mode effects. To complete the new description, the Lagrange multipliers must be determined in the classical limit. For this aim a quasi anti-commutation-relation approximation is proposed. Only if a certain relation between an SO(2N+1) parameter z and the N is satisfied, unknown parameters k and l in the Lagrange multipliers can be determined withuout any inconcistency.Comment: 36 pages, no figures, typos corrected, published versio

    Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

    Full text link
    A canonical-basis formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory is obtained with an approximation that the pair potential is assumed to be diagonal in the time-dependent canonical basis. The canonical-basis formulation significantly reduces the computational cost. We apply the method to linear-response calculations for even-even nuclei. E1 strength distributions for proton-rich Mg isotopes are systematically calculated. The calculation suggests strong Landau damping of giant dipole resonance for drip-line nuclei.Comment: 6 pages, 1 figure, INPC 2010 conference proceding
    corecore