23 research outputs found

    Asymptotically Schroedinger Space-Times: TsT Transformations and Thermodynamics

    Full text link
    We study the complete class of 5-dimensional asymptotically Schroedinger space-times that can be obtained as the TsT transform of a 5-dimensional asymptotically AdS space-time. Based on this we identify a conformal class of Schroedinger boundaries. We use a Fefferman-Graham type expansion to study the on-shell action for this class of asymptotically Schroedinger space-times and we show that its value is TsT invariant. In the second part we focus on black hole space-times and prove that black hole thermodynamics is also TsT invariant. We use this knowledge to argue that thermal global Schroedinger space-time at finite chemical potential undergoes a Hawking-Page type phase transition.Comment: References adde

    Particle Number and 3D Schroedinger Holography

    Full text link
    We define a class of space-times that we call asymptotically locally Schroedinger space-times. We consider these space-times in 3 dimensions, in which case they are also known as null warped AdS. The boundary conditions are formulated in terms of a specific frame field decomposition of the metric which contains two parts: an asymptotically locally AdS metric and a product of a lightlike frame field with itself. Asymptotically we say that the lightlike frame field is proportional to the particle number generator N regardless of whether N is an asymptotic Killing vector or not. We consider 3-dimensional AlSch space-times that are solutions of the massive vector model. We show that there is no universal Fefferman-Graham (FG) type expansion for the most general solution to the equations of motion. We show that this is intimately connected with the special role played by particle number. Fefferman-Graham type expansions are recovered if we supplement the equations of motion with suitably chosen constraints. We consider three examples. 1). The massive vector field is null everywhere. The solution in this case is exact as the FG series terminates and has N as a null Killing vector. 2). N is a Killing vector (but not necessarily null). 3). N is null everywhere (but not necessarily Killing). The latter case contains the first examples of solutions that break particle number, either on the boundary directly or only in the bulk. Finally, we comment on the implications for the problem of holographic renormalization for asymptotically locally Schroedinger space-times.Comment: 56 pages, v3: matches version published in JHE

    Torsional Newton-Cartan Geometry and Lifshitz Holography

    Get PDF
    We obtain the Lifshitz UV completion in a specific model for z=2 Lifshitz geometries. We use a vielbein formalism which enables identification of all the sources as leading components of well-chosen bulk fields. We show that the geometry induced from the bulk onto the boundary is a novel extension of Newton-Cartan geometry with a specific torsion tensor. We explicitly compute all the vevs including the boundary stress-energy tensor and their Ward identities. After using local symmetries/Ward identities the system exhibits 6+6 sources and vevs. The FG expansion exhibits, however, an additional free function which is related to an irrelevant operator whose source has been turned off. We show that this is related to a second UV completion.Comment: v2: 5 pages, matches version published in PR

    Home care—a safe and attractive alternative to inpatient administration of intensive chemotherapies

    Get PDF
    Objective: The objective of this study was to evaluate feasibility, safety, perception, and costs of home care for the administration of intensive chemotherapies. Methods: Patients receiving sequential chemotherapy in an inpatient setting, living within 30km of the hospital, and having a relative to care for them were offered home care treatment. Chemotherapy was administered by a portable, programmable pump via an implantable catheter. The main endpoints were safety, patient's quality of life [Functional Living Index—Cancer (FLIC)], satisfaction of patients and relatives, and costs. Results: Two hundred days of home care were analysed, representing a total of 46 treatment cycles of intensive chemotherapy in 17 patients. Two cycles were complicated by technical problems that required hospitalisation for a total of 5days. Three major medical complications (heart failure, angina pectoris, and major allergic reaction) could be managed at home. Grades 1 and 2 nausea and vomiting occurring in 36% of patients could be treated at home. FLIC scores remained constant throughout the study. All patients rated home care as very satisfactory or satisfactory. Patient benefits of home care included increased comfort and freedom. Relatives acknowledged better tolerance and less asthenia of the patient. Home care resulted in a 53% cost benefit compared to hospital treatment (€420 ± 120/day vs. €896 ± 165/day). Conclusion: Administration of intensive chemotherapy regimens at home was feasible and safe. Quality of life was not affected; satisfaction of patients and relatives was very high. A psychosocial benefit was observed for patients and relatives. Furthermore, a cost-benefit of home care compared to hospital treatment was demonstrate

    Brown-York Energy and Radial Geodesics

    Full text link
    We compare the Brown-York (BY) and the standard Misner-Sharp (MS) quasilocal energies for round spheres in spherically symmetric space-times from the point of view of radial geodesics. In particular, we show that the relation between the BY and MS energies is precisely analogous to that between the (relativistic) energy E of a geodesic and the effective (Newtonian) energy E_{eff} appearing in the geodesic equation, thus shedding some light on the relation between the two. Moreover, for Schwarzschild-like metrics we establish a general relationship between the BY energy and the geodesic effective potential which explains and generalises the recently observed connection between negative BY energy and the repulsive behaviour of geodesics in the Reissner-Nordstrom metric. We also comment on the extension of this connection between geodesics and the quasilocal BY energy to regions inside a horizon.Comment: v3: 7 pages, shortened and revised version to appear in CQ

    Holographic Renormalization for z=2 Lifshitz Space-Times from AdS

    Full text link
    Lifshitz space-times with critical exponent z=2 can be obtained by dimensional reduction of Schroedinger space-times with critical exponent z=0. The latter space-times are asymptotically AdS solutions of AdS gravity coupled to an axion-dilaton system and can be uplifted to solutions of type IIB supergravity. This basic observation is used to perform holographic renormalization for 4-dimensional asymptotically z=2 locally Lifshitz space-times by Scherk-Schwarz dimensional reduction of the corresponding problem of holographic renormalization for 5-dimensional asymptotically locally AdS space-times coupled to an axion-dilaton system. We can thus define and characterize a 4-dimensional asymptotically locally z=2 Lifshitz space-time in terms of 5-dimensional AdS boundary data. In this setup the 4-dimensional structure of the Fefferman-Graham expansion and the structure of the counterterm action, including the scale anomaly, will be discussed. We find that for asymptotically locally z=2 Lifshitz space-times obtained in this way there are two anomalies each with their own associated nonzero central charge. Both anomalies follow from the Scherk--Schwarz dimensional reduction of the 5-dimensional conformal anomaly of AdS gravity coupled to an axion-dilaton system. Together they make up an action that is of the Horava-Lifshitz type with nonzero potential term for z=2 conformal gravity.Comment: 32 pages, v2: modified discussion of the central charge

    Geometry of Schroedinger Space-Times, Global Coordinates, and Harmonic Trapping

    Full text link
    We study various geometrical aspects of Schroedinger space-times with dynamical exponent z>1 and compare them with the properties of AdS (z=1). The Schroedinger metrics are singular for 1<z<2 while the usual Poincare coordinates are incomplete for z \geq 2. For z=2 we obtain a global coordinate system and we explain the relations among its geodesic completeness, the choice of global time, and the harmonic trapping of non-relativistic CFTs. For z>2, we show that the Schroedinger space-times admit no global timelike Killing vectors.Comment: 15 pages, v2: some comments and references adde

    Geometry of Schroedinger Space-Times II: Particle and Field Probes of the Causal Structure

    Full text link
    We continue our study of the global properties of the z=2 Schroedinger space-time. In particular, we provide a codimension 2 isometric embedding which naturally gives rise to the previously introduced global coordinates. Furthermore, we study the causal structure by probing the space-time with point particles as well as with scalar fields. We show that, even though there is no global time function in the technical sense (Schroedinger space-time being non-distinguishing), the time coordinate of the global Schroedinger coordinate system is, in a precise way, the closest one can get to having such a time function. In spite of this and the corresponding strongly Galilean and almost pathological causal structure of this space-time, it is nevertheless possible to define a Hilbert space of normalisable scalar modes with a well-defined time-evolution. We also discuss how the Galilean causal structure is reflected and encoded in the scalar Wightman functions and the bulk-to-bulk propagator.Comment: 32 page
    corecore