1,418 research outputs found

    Le traitement des eaux usées

    Get PDF
    L'article présente brièvement l'état de l'épuration des effluents des collectivités en France et au Québec. Il souligne ensuite quelques changements importants intervenus depuis dix ans dans le monde grâce aux progrès de la recherche et qui pourraient marquer l'avenir.En France, 95 % des agglomérations de plus de 10 000 équivalents-habitants disposent d'une station d'épuration. Le rythme de construction a atteint 730 installations nouvelles dans l'année 1976 mais il est redescendu à moins de 300/an. Sur les 11 310 stations de plus de 200 équivalents-habitants recensées, 5 % réalisent seulement un traitement primaire et la moitié en nombre, représentant plus de 60 % de la capacité de traitement utilisent le procédé des boues activées.Les investissements à réaliser entre 1994 et 2005 pour satisfaire aux exigences de la directive européenne du 21 mai 1991 sont évalués à environ 36 milliards de francs français, correspondant à la création de capacités de traitement supplémentaires de 17 millions d'équivalents-habitants et à des améliorations plus ou moins importantes d'un grand nombre de stations existantes.Au Québec, la construction des stations d'épuration s'est faite essentiellement dans les années 80 et 90. Aujourd'hui, près de 80 % de la population est desservie par des installations d'épuration, soit environ 4,9 millions d'habitants pour un débit hydraulique de 5,3 millions de m3/j.Parmi les 450 ouvrages municipaux ceux des Communautés Urbaines de Montréal et de Québec représentent, à eux seuls, près de 60 % de la capacité installée.Les stations physico-chimiques, bien que peu nombreuses, sont les plus importantes (6 stations pour 2,28 millions d'habitants) suivies par les boues activées (40 stations pour 0,69 million d'habitants) et la biofiltration (9 stations pour 0,75 million d'habitants). Environ 320 stations, de dimension plus modeste utilisent des étangs aérés, desservant en moyenne une population de 3 500 habitants.Sur le plan de l'évolution des techniques, la décennie écoulée a vu apparaître ou se confirmer des évolutions qui marqueront sans doute profondément la conception et l'exploitation des stations d'épuration dans les années à venir : - l'objectif maintenant presque généralisé d'éliminer les nutriments azote et phosphore et le développement rapide des techniques correspondantes;- la prise de conscience de l'importance des flux polluants véhiculés par les eaux pluviales et un début d'adaptation des stations d'épuration;- le développement limité mais réel des traitements anaérobies qui ont survécu à la démobilisation des surlendemains de la crise énergétique;- le fort développement des systèmes d'épuration biologique à culture fixée et notamment des biofiltres;- l'apparition prometteuse des membranes dans les systèmes d'épuration biologique permettant d'envisager de nouveaux objectifs de traitement;- la prise en compte de la fiabilité des systèmes d'épuration avec un poids de plus en plus important par rapport aux performances de pointe- une vision plus intégrée de la prévention des pollutions tant dans l'industrie (technologies propres) que dans les agglomérations (gestion intégrée de l'ensemble réseau-station d'épuration).This paper provides a brief discussion of the state of municipal wastewater treatment in France and Quebec. It then presents some important changes that have developed over the last ten years in the world and their potential influence on the future.In France, 95% of towns of more than 10 000 residents have a wastewater treatment plant. Construction of new plants reached 730 installations in 1976, but has since declined to less than 300/year. Among 11 310 sites of more of 200 inhabitants, 5 % utilize only primary treatment and 50 % utilize the activated sludge process which represents 60 % of the treatment capacity.In order to satisfy the European directive of May 21st 1991, approximately 36 billion French Francs should be invested between 1994 and 2005. This investment represents new wastewater treatment facilities for 17 million people.In Quebec, construction of wastewater treatment plants occurred mainly during the 80's and 90's. Today, nearly 80 % of the population is served by wastewater treatment plants, which represent approximately 4,9 million residents. This accounts for a flow rate of 5,3 million cubic meters per day.Among 450 municipal treatment plants, those of the urban communities of Montreal and Quebec represent nearly 60 % of the total wastewater treatment capacity of Quebec.Physico-chemical treatment plants are the most significant (6 plants for 2,28 million residents) followed by activated sludge process plants (40 plants for 0,69 million residents) and plants using biofilter technologies (9 plants for 0,75 million residents). A total of approximately 320 small treatment plants, serving an average of 3 500 residents, use the aerated lagoon treatment.Over the past decade technological developments have resulted in an evolution that will modify the design and operation of wastewater treatment plants in the future:- the more widespread use of techniques developed for the elimination of nitrogen and phosphorus; - the realization of the importance of polluting charges transported by pluvial waters; the beginning of the resultant wastewater treatment plant adaptations; - the limited development of anaerobic treatments that have survived the energy crisis; - the valuable development of biological fixed-culture systems for wastewater treatment and most notably, the biofilters; - the appearance of promising membrane technology in wastewater treatment systems, which could facilitate the definition of new treatment objectives; - the consideration the global reliability of the wastewater treatment systems instead of only peak performance; - a more integrated vision for the prevention of pollution in industry (clean technologies) as well as in the domestic environment (integrated management of sewerage system and wastewater treatment plant

    État du développement technologique en matière d'enlèvement des métaux des effluents industriels

    Get PDF
    Cette étude trace un profil des diverses technologies utilisées et en développement pour la séparation et/ou la récupération des métaux dans les effluents industriels. Les principes de fonctionnement de ces technologies sont abordés, ainsi que leurs avantages et limites d'utilisation. Les procédés d'enlèvement et de récupération des métaux comprennent les techniques de précipitation (formation d'hydroxydes, de carbonates, de sulfures, etc.) et coprécipitation (sels de fer et d'aluminium, etc.), d'adsorption (sable, cellulose, charbon activé, pyrite, ciment, lignite, mousse de tourbe, sciure de bois, etc.) et de biosorption (bactéries, levures, moisissures, algues marines et d'eaux douces), d'électrodéposition et d'électrocoagulation, de cémentation, de séparation par membranes (osmose inverse et électrodialyse), d'extraction par solvant (acides carboxyliques, amines aliphatiques ou aromatiques, acides aminés, composés phénoliques, phosphates alkyl, etc.), et d'échange d'ions (résines naturelles et synthétiques). La précipitation ou la coprécipitation représentent les procédés les plus largement utilisés et étudiés pour l'enlèvement des métaux des effluents industriels, suivis des techniques d'adsorption. Les procédés plus sophistiqués tels que l'électrodéposition, l'extraction par solvant, la séparation par membranes et l'échange d'ions, bien que largement utilisés dans les procédés métallurgiques, sont relativement peu employés et examinés pour le traitement des effluents industriels. La biosorption a fait l'objet de plusieurs travaux de recherche au cours des dernières années et représente une option intéressante pour le traitement de divers types d'effluents contenant de faibles concentrations en métaux. Finalement, le recyclage et la gestion optimale des effluents constitue une avenue de plus en plus suivie par les industries soucieuses de satisfaire aux nouvelles réglementations et législations.This study is dedicated to the review of the different technologies used and evaluated for the removal and/or recovery of metals from industrial effluents. The principles involved in these technologies are discussed, as well as the advantages and limits associated with these processes. The metal removal and recovery processes include the following techniques: precipitation, adsorption and biosorption, electrowinning and electrocoagulation, cementation, membrane separations, solvent extraction and ion exchange.Precipitation and coprecipitation are the most used and studied methods for metal removal from industrial waste waters. The method of precipitation used most often to remove metals from waste water consists of precipitating them in the form of hydroxides. The usual procedure involves the addition of chemicals such as lime (CaO or Ca(OH)2), Mg(OH)2, NaHCO3, Na2 CO3, (NH4)2 CO3, NaOH or NH4 OH. The precipitation of metals by carbonates or sulphides is an effective alternative to hydroxide precipitation. The use of carbonates allows the precipitation of metals to occur at pH values lower than those necessary with the hydroxides. Moreover, the precipitates thus formed are denser and have better characteristics of solid-liquid separation. Precipitation by sulphides is normally carried out with reagents such as: Na2 S, NaHS, H2 S or FeS. In acidic media, the lower solubility of metal sulphides (Cd, Co, Cu, Cr, Ni, Mn, Zn, etc.), makes it possible to reach concentrations lower than those obtained by precipitation as hydroxides. Coprecipitation with aluminum and iron salts is also an effective means for the removal of metals from effluents.Adsorption methods are also widely applied and examined for this purpose. However, in most cases the use of adsorbents requires an effluent neutralization step. Indeed, the neutralization of acid effluents must take place to allow their disposal in sewerage systems. A wide variety of adsorbents can be employed, both organic and inorganic: aluminum or iron oxides, sand, activated carbon, mixtures of coal and pyrite, iron particles, gravel or crushed brick, cement, etc. Studies have demonstrated the possibility of eliminating metals by adsorption on vegetable matter: peat moss, sawdust and wood bark, etc. Chitin and chitosan, two natural polymers that are abundant in the cell walls of fungi and shellfish, also have excellent properties of metal fixation. The utilization of different agricultural by-products (peanut skins, coconuts, corn cobs, onions skins, tea leaves, coffee powder, canola meal, etc.) for metal adsorption has also been proposed.Biosorption has been intensively studied in recent years as an economical treatment for metal recovery from dilute industrial effluents. Biosorption implies the use of live or dead biomass and/or their derivatives, which adsorb the metal ions with the ligands or functional groups located on the external surface of the microbial cells. Capacities for metal adsorption on various types of biomass (bacteria, yeasts, fungi, marine and freshwater algae) have been evaluated. The microorganisms used for the metal adsorption step must usually be immobilized in a matrix or in an easily recoverable support. The immobilizing agents or matrices most usually employed are alginate, polyacrylamine, polysulphone, silica gel, cellulose and glutaraldehyde.Electrowinning is a well-established technology that is widely employed in the mining and metallurgical industries (heap leaching, acid mine drainage, etc.), in metal transformation industries (wastes from plating and metal finishing), and in the electronics and electrical industries for the removal and/or the recovery of metals in solution. Many metals (Ag, Au, Cd, Co, Cr, Cu, Ni, Pb, Sn and Zn) present in the effluents can be recovered by electrodeposition using insoluble anodes.Electrocoagulation is another electrochemical approach, which uses an electrical current to remove several metals in solution. In fact, the electrocoagulation systems can be effective in removing suspended solids, dissolved metals, tannins and dyes. The contaminants present in waste water are maintained in solution by electrical charges. When these ions and the other charged particles are neutralized with ions of opposite electric charge, provided by a electrocoagulation system, they become destabilized and precipitate in a form that is usually very stable.Cementation is a type of precipitation method implying an electrochemical mechanism. In this process, a metal having a higher oxidation potential passes into solution (e.g., oxidation of metallic iron, Fe(0), to ferrous iron, Fe(II)) to replace a metal having a lower oxidation potential. Copper is the metal most frequently separated by cementation. However, the noble metals (Ag, Au and Pd), as well as As, Cd, Ga, Pb, Sb and Sn, can also be recovered in this manner.Reverse osmosis and electrodialysis are two processes using semipermeable membranes applicable to the recovery of metal ions. In electrodialysis, selective membranes (alternation of cation and anion membranes) fit between the electrodes in electrolytic cells. A continuous electrical current and the associated ion migrations, allow the recovery of metals. The techniques of membrane separation are very efficient for the treatment of dilute waste waters.The metallurgical industry has used solvent extraction for many years for a broad range of separations. This technique is employed today for the removal of soluble metals (Cd, Cr, Co, Cu, Ni, Mo, U, V, Zn, etc.) from waste water. Separation is carried out in contact with an immiscible organic phase to form salts or complex compounds, which give a favorable solubility distribution between the aqueous and organic phases. Various types of reagents can be used for the extraction: carboxylic acids, aliphatic or aromatic amines, amino acids, alkyl phosphates, phenolic compounds. The non-selective removal of metal contaminants in aqueous solutions can be obtained with a whole range of organic reagents. Promising new reagents have been proposed recently for the selective extraction of metals, such as Cd, Co, Cr and Zn.Ion exchangers are insoluble substances having in their molecular structure acidic or basic groups able to exchange, without modification of their physical structure, the positive or negative ions fixed at these groups. The first ion exchangers used were natural substances containing aluminosilicates (zeolites, clays, etc). Nowadays, the most-used ion exchangers are mainly organic in nature (resins). For the extraction of metals, the removal of cations in solution is usually done with the sulphonic acid group (-SO3- H+) of a polystyrene resin, or, with a chelating resin containing iminodiacetate functional groups. Ion exchange has recently received considerable attention for the separation and concentration of metals from waste water. These developments are especially applicable to the plating and metal transformation industries, for the removal of Cr, Co, Cu, Cd, Ni, Fe and Zn.The more sophisticated processes, such as electrowinning, solvent extraction, membrane separations and ion exchange, although frequently used in metallurgical processes, are less popular for wastewater treatment than are precipitation methods. Finally, recycling and optimal management of effluents constitutes an approach more and more widely applied by industries to satisfy new environmental regulations and laws

    Revue sur l'enlèvement des métaux des effluents par adsorption sur la sciure et les écorces de bois

    Get PDF
    Les résidus de transformation du bois tels les écorces et la sciure de bois ont été largement étudiés depuis quelques années pour leur propriété d'adsorption et d'enlèvement des métaux toxiques contenus dans les effluents contaminés. En ce qui concerne la sciure de bois, les recherches répertoriées ont porté principalement sur l'utilisation du sapin rouge, du manga, du tilleul, de l'épinette, du pin, du cèdre, du teck, de l'akamatsu et du buna. Pour ce qui est des écorces de bois, plusieurs espèces ont été étudiées, notamment les écorces de pin, de chêne et d'épinette. La présente revue fait le point sur les performances de ces différents adsorbants peu coûteux pour l'adsorption des principaux métaux contaminants (Cd, Cr, Cu, Hg, Ni, Pb et Zn). Les points discutés portent sur les méthodes de préparation (lavage, séchage et tamisage) et de traitement chimique de l'adsorbant (traitement acide ou basique, traitement à la formaldéhyde, phosphatation, carboxylation, sulfoéthylation, carboxyméthylation, etc.), les conditions opératoires utilisées lors de l'adsorption, les modèles thermodynamiques, cinétiques et autres applicables au couple adsorbant-adsorbat, l'effet des principaux paramètres opératoires (temps de contact, pH de traitement, température, concentration d'adsorbant, taille des particules, etc.), les principes et les mécanismes impliqués dans l'élimination des contaminants métalliques par les adsorbants présentés.Wood industry by-products such as barks and sawdusts have been widely studied in recent years for their property of metal adsorption and metal removal from contaminated effluents. Concerning the utilization of sawdusts, many researchers have studied metal adsorption on material from species such as red fir, mango, lime, pine, cedar, teak, Japanese red pine and Japanese beech. As regards wood barks, several species were studied, in particular pine, oak and spruce. The present review gives a progress report on the efficiency of these various inexpensive materials for the adsorption of different metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn). The points discussed relate to the preparation methods (washing, drying, screening) and the chemical treatments of the adsorbents (acid or base treatment, formaldehyde treatment, phosphatation, carboxylation, sulfoethylation, carboxymethylation, etc.). We also consider the operating conditions used during adsorption, the thermodynamic, kinetic and other models applicable to the adsorbent-adsorbate couple, the effect of the operational parameters (time of contact, pH, temperature, adsorbent concentration, particle size, etc.), as well as the principles and mechanisms involved in metal removal by the adsorbents.The accumulation of organic or inorganic matter at the solid-liquid interface is the basis of almost all surface reactions. Adsorption is often a process described in terms of isotherms, which represent the relationship between the concentration of a solute in solution and the quantity adsorbed at the surface at constant temperature. The isotherms are often used to establish the maximum adsorption capacity of a given adsorbent for metals. Langmuir and Freundlich isotherms are the most frequently used and their models are presented in this review.Knowledge of adsorption parameters is essential for understanding the adsorption mechanisms involved. Usually, the maximum adsorption capacity for sawdusts and barks is reached after one hour. The pH of the ambient water is a very important parameter because it affects the metal adsorption capacities. For most of the metals studied, the adsorption capacity increases when the pH increases. The opposite effect is observed for metals involved in an anionic complex (Cr, Se, Pt, Au). Metal adsorption efficiency also improves with increases in substrate concentration because there are more available adsorption sites. Metal adsorption is affected by an another important factor, the particle size. In effect, a smaller size particle increases the specific surface and improves the adsorption capacity. The presence of anions in the effluent doesn't appear to have a great effect on adsorption results with sawdusts. However, some anions were reported to have an influence on the metal adsorption capacities of barks. In the case of a metal mixture, the presence of one metal may influence, compete or exclude the recovery of another metal from the solution.Sawdusts contain lignin, cellulose, tannin and protein. Wood tannin likely serves as a primary adsorption site for divalent cations. The application of chemical treatments on sawdusts could modify the lignin functional groups. Other studies regarding the participation of major components of barks (lignin, carbohydrate and protein) in the adsorption process revealed the involvement of amine and carboxyl functional groups. The proposed mechanism involves an ion-exchange process. This phenomenon suggests that cationic exchange is the active mechanism for some wood species, in agreement with the work of some researchers.Currently, only a few industries use plant biomass to eliminate metals in wastewater. To encourage industries to use this biotechnology, research has to be oriented towards the cheapest and most competitive process rather than the current and conventional process. Forest waste products are produced in large quantities in several countries. They constitute easily-available resources of low cost. Future research in this field should be focused on cheap new chemical treatments to apply to by-products to improve their adsorption capacities

    Choix multicritère de procédés d'épuration des eaux usées municipales

    Get PDF
    Les stations d'épuration des eaux usées municipales du Québec, comme ailleurs au Canada et aux États Unis, sont en général peu efficaces sur le plan énergétique. Il est donc possible de concevoir des hypothèses de chaînes épuratoires améliorées au plan de leur efficacité énergétique et de leur performance globale en y introduisant, d'une part, diverses MEEE et, d'autre part, certains procédés unitaires améliorant l'épuration. Cependant, le problème de choisir, parmi ces hypothèses de chaînes d'épuration, celle correspondant au procédé le plus adéquat pour prendre en charge une situation donnée, demeure entier. Cet article analyse ce problème de choix pour les stations d'épuration de capacité comprise entre 5,000 m3/d (≈ 5000 personnes) et 100,000 m3/d (≈ 100,000 personnes). En faisant l'hypothèse, d'un côté, que l'ajout des mesures d'efficacité énergétique peut améliorer la consommation énergétique d'une chaîne d'épuration, et d'un autre côté, que l'insertion de segments de procédés peut contribuer à améliorer leur performance globale, nous avons élaboré, à partir des stations d'épuration de types Biofiltration, Physico-chimique, Réacteurs Biologiques séquentiels (deux variantes), Boues activées et Étangs aérés, six (6) hypothèses de chaînes épuratoires (chaînes 1 à 6) respectant les exigences opérationnelles et épuratoires et nous les avons comparées entre elles, sur la base d'une analyse multicritère d'aide à la décision, en vue d'en déterminer les plus performantes. Cette analyse multicritère intègre les aspects techniques, énergétiques, économiques, etc. et prend en compte les préférences du(des) décideur(s) dans le processus de choix. Les résultats obtenus montrent que, parmi les six hypothèses de chaînes étudiées, les trois premières positions sont occupées par les chaînes 3, 1 et 4 respectivement. Ce type d'analyse pourrait jouer un rôle complémentaire à une étude technico-économique visant le choix de technologies d'épuration.Quebec municipal wastewater treatment facilities, like those elsewhere in Canada and the United States, generally are low efficiency energy consumers (ELECTRIC POWER RESEARCH INSTITUTE (EPRI), 1993; OWEN, 1982; ONTARIO-HYDRO, 1993; METCALF and EDDY, INC., 1992, SASSEVILLE et al., 1995). The work of METCALF and EDDY, INC. (1992) and of EPRI (1993) concluded that it would be possible to substantially reduce electricity demand and to improve the utilization of electrical energy in the municipal wastewater treatment processes by introducing Electricity Saving Measures (ESMs) in the processes and their management.In the province of Quebec, given the potential savings linked to the reduction of electricity consumption in municipal wastewater treatment facilities, and the progressive expansion of the province's wastewater treatment facilities, the adoption of energetically efficient wastewater treatment technologies is particularly timely. SASSEVILLE et al. (1995) estimated that it would be possible to save 5 M atthepresentlevelofwastewatertreatment,basedonacostofabout24M at the present level of wastewater treatment, based on a cost of about 24 M for the 400 GWh of electricity annually consumed in the municipal wastewater treatment facilities. This saving would come solely from the implementation of appropriate energy-saving measures.In hypothesizing on one hand that adding energy-saving measures can improve the energy consumption of a wastewater treatment chain, and on the other hand that the introduction of segments of processes can contribute in improving overall performance, we have elaborated from existing wastewater treatment facilities six hypotheses of liquid treatment chains that respect operational and regulation requirements, on the basis of the experience developed in the operation of municipal wastewater treatment facilities. The six hypothetical treatment chains were elaborated from facilities of the following types: biofiltration (chain 1), physico-chemical (chain 2), sequencing biological (batch) reactors system A (chain 3), sequencing biological (batch) reactors system B (chain 4), activated sludge (chain 5) and aerated lagoons (chain 6). The energy-saving measures utilized in the elaboration of these hypothetical treatment chains were chosen on the basis of a conjunctive analysis (KIBI et al., 1997). However, the problem of choosing among these treatment chains the one corresponding to the most adequate process for a particular situation is still present. The present article analyzes this choice for wastewater treatment facilities of a capacity between 5 000 m3/d (≈ 5 000 persons) and 100 000 m3/d (≈ 100 000 persons).How then to choose the most efficient of these hypothetical municipal wastewater treatment chains?Generally, the choice of the treatment technologies is done on the basis of single-criterion mathematical models: for example, the reduction of construction costs, or of exploitation and maintenance costs (ECKENFELDER, 1982; PINEAU et al., 1985; WANG and WANG, 1979; TYTECA et al., 1977). There are other approaches based on dynamic simulation models or on technological and econometric analyses (HYDRO-QUÉBEC, 1993; MACRAE 1989; LESSARD, 1989; BROCKTON, 1987; HOLDREN, 1987; FOSBERG and MUKHOPADHYAY, 1981; REID, CROWTHER and PARTNERS, 1978; KLEMETSON and GRENNEY, 1976).These different approaches are often insufficient to distinguish the real value of the different technological options. Furthermore, they do not take into account many important factors (technological, economic, financial and environmental, ergonomic and socio-political) that affect their implementation and should be considered in identifying an acceptable and viable solution.The multicriteria approach of decision-making advocated in this article can mitigate this difficulty. It will take into account key factors in the conception and operation of treatment technologies, especially energy and environmental factors, likely to give rise to efficient treatment facilities from both an energy and a treatment point of view. However the analysis of decisional factors to consider in this multicriteria analysis gives rise to a particular problem. They affect the decision that can be appreciated by deterministic relationships, offering a high level of certainty as to its evaluation, while others have a non-deterministic nature (uncertainty and imprecision). Research using the multicriteria analysis approach has been performed in similar situations over the last twenty years, in some cases applied to the environmental and energy sectors (e.g. KEENEY and NAIR 1977; ROY and VINCKE 1981; TEGHEM and KUNSCH 1985; SIMOS 1990; HANSON 1991; ROUSSEAU and MARTEL 1994). Here again, these approaches have limits since the cases were treated either in a situation of certainty or a situation of uncertainty and imprecision. The proposed model deals with the case of certainty and uncertainty at the same time, therefore improving the applicability of the multicriteria approach in the situation under study. The solution retained consists of applying this type of modelling in order to classify from the best to the worst, the six hypothetical treatment chains. This approach utilizes in the modelling process, fourteen evaluation criteria, various criteria weights, quantitative and qualitative evaluations, as well as the indifference, preference and veto thresholds. The main steps of the model are the construction of evaluated outclass relationships and the exploitation of these outclass relationships. The multicriteria aggregation procedure utilizes an elaborated mathematical model based upon the methods of ELECTRE III (Roy, 1978) and PROMETHEE II (BRANS et al., 1984), as well as the works of DÉROT et al. (1994). The ranking of these treatment chain hypotheses, elaborated on an empirical level in consultation with the operators and others involved in wastewater treatment and obtained on the basis of this procedure, can discriminate among their overall performance characteristics rather well. It also emphasizes their energy efficiency, since the energy criteria have on average in the analysis a weight that is 28% higher than the other evaluation criteria. The results obtained show that the hypothetical chain 3 is ranked first, chain 1 occupies the second rank, whereas chain 4 is in the third rank. The last three ranks are occupied respectively by chains 6, 5 and 2.In a decisional and strategic approach, the first three treatment chain hypotheses can be considered overall as being the highest achievers. This result signifies that in the scope of investments related to the expansion of treatment facilities and the construction of facilities with a flow rate contained within the considered range, these three treatment chains (when considering different modification hypotheses), should be preferred over the other chains when the emphasis is on their overall performance including energy efficiency. However, other analyses would be necessary in the case of the construction of a new wastewater treatment facility with a flow rate above the level considered in this study.Generally, the results of this analysis can assist in discriminating among the behaviors of the technologies considered, and in judging their relative performance in the investments of the construction of new wastewater treatment facilities, in addition to a technico-economic analysis. Overall, the multicriteria model described in this study identified a compromise solution between evaluations of a different and conflicting nature. This result demonstrates that this type of analysis is appropriate for tackling multidimensional problems

    An Introduction to Superconducting Qubits and Circuit Quantum Electrodynamics

    Full text link
    A subset of the concepts of circuit quantum electrodynamics are reviewed as a reference to the Axion Dark Matter Experiment (ADMX) community as part of the proceedings of the 2nd Workshop on Microwave Cavities and Detectors for Axion Research. The classical Lagrangians and Hamiltonians for an LC circuit are discussed along with black box circuit quantization methods for a weakly anharmonic qubit coupled to a resonator or cavity

    Accurate Determination of the Mass Distribution in Spiral Galaxies: II. Testing the Shape of Dark Halos

    Full text link
    New high resolution CFHT Fabry-Perot data, combined with published VLA 21 cm observations are used to determine the mass distribution of NGC 3109 and IC 2574. The multi-wavelength rotation curves allow to test with confidence different dark halo functional forms from the pseudo-isothermal sphere to some popular halo distributions motivated by N-body simulations. It appears that density distribution with an inner logarithmic slope <= -1 are very hard to reconcile with rotation curves of late type spirals. Modified Newtonian Dynamics (MOND) is also considered as a potential solution to missing mass and tested the same way. The new higher resolution data show that MOND can reproduce in details the rotation curve of IC 2574 but confirm its difficulty to fit the kinematics of NGC 3109.Comment: 28 pages, accepted by AJ. New HI profile increases the compatibility of NGC 3109 rotation curve with MON

    Dynamics of dispersive single qubit read-out in circuit quantum electrodynamics

    Full text link
    The quantum state of a superconducting qubit nonresonantly coupled to a transmission line resonator can be determined by measuring the quadrature amplitudes of an electromagnetic field transmitted through the resonator. We present experiments in which we analyze in detail the dynamics of the transmitted field as a function of the measurement frequency for both weak continuous and pulsed measurements. We find excellent agreement between our data and calculations based on a set of Bloch-type differential equations for the cavity field derived from the dispersive Jaynes-Cummings Hamiltonian including dissipation. We show that the measured system response can be used to construct a measurement operator from which the qubit population can be inferred accurately. Such a measurement operator can be used in tomographic methods to reconstruct single and multiqubit states in ensemble-averaged measurements.Comment: Revised version: corrected typos, 8 pages, 6 figures, version with high resolution figures available at http://qudev.ethz.ch/content/science/PubsPapers.htm

    Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurement

    Full text link
    In this paper we derive an effective master equation and quantum trajectory equation for multiple qubits in a single resonator and in the large resonator decay limit. We show that homodyne measurement of the resonator transmission is a weak measurement of the collective qubit inversion. As an example of this result, we focus on the case of two qubits and show how this measurement can be used to generate an entangled state from an initially separable state. This is realized without relying on an entangling Hamiltonian. We show that, for {\em current} experimental values of both the decoherence and measurement rates, this approach can be used to generate highly entangled states. This scheme takes advantage of the fact that one of the Bell states is decoherence-free under Purcell decay.Comment: 7 pages, 4 figure
    corecore