16,101 research outputs found

    Localized Stress Fluctuations Drive Shear Thickening in Dense Suspensions

    Full text link
    The mechanical response of solid particles dispersed in a Newtonian fluid exhibits a wide range of nonlinear phenomena including a dramatic increase in the viscosity \cite{1-3} with increasing stress. If the volume fraction of the solid phase is moderately high, the suspension will undergo continuous shear thickening (CST), where the suspension viscosity increases smoothly with applied shear stress; at still higher volume fractions the suspension can display discontinuous shear thickening (DST), where the viscosity changes abruptly over several orders of magnitude upon increasing applied stress. Proposed models to explain this phenomenon are based in two distinct types of particle interactions, hydrodynamic\cite{2,4,5} and frictional\cite{6-10}. In both cases, the increase in the bulk viscosity is attributed to some form of localized clustering\cite{11,12}. However, the physical properties and dynamical behavior of these heterogeneities remains unclear. Here we show that continuous shear thickening originates from dynamic localized well defined regions of particles with a high viscosity that increases rapidly with concentration. Furthermore, we find that the spatial extent of these regions is largely determined by the distance between the shearing surfaces. Our results demonstrate that continuous shear thickening arises from increasingly frequent localized discontinuous transitions between coexisting low and high viscosity Newtonian fluid phases. Our results provide a critical physical link between the microscopic dynamical processes that determine particle interactions and bulk rheological response of shear thickened fluids

    Bayesian spatial analysis of a national urinary schistosomiasis questionnaire to assist geographic targeting of schistosomiasis control in Tanzania, East Africa.

    Get PDF
    Spatial modelling was applied to self-reported schistosomiasis data from over 2.5 million school students from 12,399 schools in all regions of mainland Tanzania. The aims were to derive statistically robust prevalence estimates in small geographical units (wards), to identify spatial clusters of high and low prevalence and to quantify uncertainty surrounding prevalence estimates. The objective was to permit informed decision-making for targeting of resources by the Tanzanian national schistosomiasis control programme. Bayesian logistic regression models were constructed to investigate the risk of schistosomiasis in each ward, based on the prevalence of self-reported schistosomiasis and blood in urine. Models contained covariates representing climatic and demographic effects and random effects for spatial clustering. Degree of urbanisation, median elevation of the ward and median normalised difference vegetation index (NDVI) were significantly and negatively associated with schistosomiasis prevalence. Most regions contained wards that had >95% certainty of schistosomiasis prevalence being >10%, the selected threshold for bi-annual mass chemotherapy of school-age children. Wards with >95% certainty of schistosomiasis prevalence being >30%, the selected threshold for annual mass chemotherapy of school-age children, were clustered in north-western, south-western and south-eastern regions. Large sample sizes in most wards meant raw prevalence estimates were robust. However, when uncertainties were investigated, intervention status was equivocal in 6.7-13.0% of wards depending on the criterion used. The resulting maps are being used to plan the distribution of praziquantel to participating districts; they will be applied to prioritising control in those wards where prevalence was unequivocally above thresholds for intervention and might direct decision-makers to obtain more information in wards where intervention status was uncertain

    Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors

    Get PDF
    We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3×10^5 to 6.5×10^3. By using this technique adequate optical spring damping can be obtained to damp parametric instability predicted for advanced laser interferometer gravitational-wave detectors

    A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Get PDF
    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10 types at 1500 Ma and 50 cell types at ~1000 Ma. CONCLUSIONS: The results suggest that oxygen levels in the environment, and the ability of eukaryotes to extract energy from oxygen, as well as produce oxygen, were key factors in the rise of complex multicellular life. Mitochondria and organisms with more than 2–3 cell types appeared soon after the initial increase in oxygen levels at 2300 Ma. The addition of plastids at 1500 Ma, allowing eukaryotes to produce oxygen, preceded the major rise in complexity

    The Infrared Massive Stellar Content of M83

    Full text link
    We present an analysis of archival Spitzer images and new ground-based and Hubble Space Telescope (HST) near-infrared (IR) and optical images of the field of M83 with the goal of identifying rare, dusty, evolved massive stars. We present point source catalogs consisting of 3778 objects from SpitzerSpitzer Infrared Array Camera (IRAC) Band 1 (3.6 μ\mum) and Band 2 (4.5 μ\mum), and 975 objects identified in Magellan 6.5m FourStar near-IR JJ and KsK_{\rm s} images. A combined catalog of coordinate matched near- and mid-IR point sources yields 221 objects in the field of M83. Using this photometry we identify 185 massive evolved stellar candidates based on their location in color-magnitude and color-color diagrams. We estimate the background contamination to our stellar candidate lists and further classify candidates based on their appearance in HSTHST Wide Field Camera 3 (WFC3) observations of M83. We find 49 strong candidates for massive stars which are very promising objects for spectroscopic follow-up. Based on their location in a B−VB-V versus V−IV-I diagram, we expect at least 24, or roughly 50%, to be confirmed as red supergiants.Comment: 32 pages, 23 figures, accepted for publication in A&
    • …
    corecore