13,028 research outputs found
Some flight mechanics considerations for the Voyager mission
Voyager mission study considerations including launch opportunities, trajectory design, performance capability of Saturn V launch vehicle, and vehicle load relief contro
Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors
We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3×10^5 to 6.5×10^3. By using this technique adequate optical spring damping can be obtained to damp parametric instability predicted for advanced laser interferometer gravitational-wave detectors
Sand in the wheels, or oiling the wheels, of international finance? : New Labour's appeal to a 'new Bretton Woods'
Tony Blair’s political instinct typically is to associate himself only with the future. As such, his explicit appeal to ‘the past’ in his references to New Labour’s desire to establish a “new Bretton Woods” is sufficient in itself to arouse some degree of analytical curiosity (see Blair 1998a). The fact that this appeal was made specifically in relation to Bretton Woods is even more interesting. The resonant image of the international economic context established by the original Bretton Woods agreements invokes a style and content of policy-making which Tony Blair typically dismisses as neither economically nor politically consistent with his preferred vision of the future (see Blair 2000c, 2001b)
Choosing the lesser of two evils, the better of two goods: Specifying the roles of ventromedial prefrontal cortex and dorsal anterior cingulate in object choice
The ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortices (ACd) are considered important for reward-based decision making. However, work distinguishing their individual functional contributions has only begun. One aspect of decision making that has received little attention is that making the right choice often translates to making the better choice. Thus, response choice often occurs in situations where both options are desirable (e.g., choosing between mousse au chocolat or crème caramel cheesecake from a menu) or, alternatively, in situations where both options are undesirable. Moreover, response choice is easier when the reinforcements associated with the objects are far apart, rather than close together, in value. We used functional magnetic resonance imaging to delineate the functional roles of the vmPFC and ACd by investigating these two aspects of decision making: (1) decision form (i.e., choosing between two objects to gain the greater reward or the lesser punishment), and (2) between-object reinforcement distance (i.e., the difference in reinforcements associated with the two objects). Blood oxygen level-dependent (BOLD) responses within the ACd and vmPFC were both related to decision form but differentially. Whereas ACd showed greater responses when deciding between objects to gain the lesser punishment, vmPFC showed greater responses when deciding between objects to gain the greater reward. Moreover, vmPFC was sensitive to reinforcement expectations associated with both the chosen and the forgone choice. In contrast, BOLD responses within ACd, but not vmPFC, related to between-object reinforcement distance, increasing as the distance between the reinforcements of the two objects decreased. These data are interpreted with reference to models of ACd and vmPFC functioning
Evaluation of a technique to generate artificially thickened boundary layers in supersonic and hypersonic flows
The feasibility of using a contoured honeycomb model to generate a thick boundary layer in high-speed, compressible flow was investigated. The contour of the honeycomb was tailored to selectively remove momentum in a minimum of streamwise distance to create an artificially thickened turbulent boundary layer. Three wind tunnel experiments were conducted to verify the concept. Results indicate that this technique is a viable concept, especially for high-speed inlet testing applications. In addition, the compactness of the honeycomb boundary layer simulator allows relatively easy integration into existing wind tunnel model hardware
Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves
We propose a generalization of the two-dimensional eikonal-limit cloak
derived from a conformal transformation to three dimensions. The proposed cloak
is a spherical shell composed of only isotropic media; it operates in the
transmission mode and requires no mirror or ground plane. Unlike the well-known
omnidirectional spherical cloaks, it may reduce visibility of an arbitrary
object only for a very limited range of observation angles. In the
short-wavelength limit, this cloaking structure restores not only the
trajectories of incident rays, but also their phase, which is a necessary
ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse
vector-wave (electromagnetic) versions are presented.Comment: 17 pages, 12 figure
- …