2,905 research outputs found

    Supersonic axial-force characteristics of a rectangular-box cavity with various length-to-depth ratios in a flat plate

    Get PDF
    A wind-tunnel investigation has been conducted at Mach numbers of 1.50, 2.16, and 2.86 to obtain axial-force data on a metric rectangular-box cavity with various length-to-depth ratios. The model was tested at angles of attack from -4 deg to -2 deg. The results are summarized to show variations in cavity axial-force coefficient for deep- and shallow-cavity configurations with detached and attached cavity flow fields, respectively. The results of the investigation indicate that for a wide range of cavity lengths and depths, good correlations of the cavity axial-force coefficients (based on cavity rear-face area) are obtained when these coefficients are plotted as a function of cavity length-to-depth ratio. Abrupt increases in the cavity axial-force coefficients at an angle of attack of 0 deg. reflect the transition from an open (detached) cavity flow field to a closed (attached) cavity flow field. Cavity length-to-depth ratio is the dominant factor affecting the switching of the cavity flow field from one type to the other. The type of cavity flow field (open or closed) is not dependent on the test angles of attack except near the critical value of length-to-depth ratio

    Effect of Reynolds number on the aerodynamic stability and control characteristics of a 55 deg clipped-delta-wing orbiter configuration at supersonic Mach numbers

    Get PDF
    A wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 4.63 for Reynolds numbers varying from approximately 0.8 million to 10.0 million (based on body length) to determine the Reynolds number effects on the static longitudinal and lateral aerodynamic stability and control characteristics of two scale models of the Grumman H-33 space shuttle orbiter. The results indicate that for the Reynolds number range investigated, there are no Reynolds number effects on the longitudinal or lateral aerodynamic characteristics of either model with zero control deflections and only negligible effects with control deflections. The roll control is constant for both models with the possible exception of a slight increase with increases in Reynolds number up to 2.0 million at the lower Mach numbers. This very small Reynolds number effect is much more apparent for the smaller model and disappears with increasing Mach and Reynolds numbers

    An experimental wind-tunnel investigation of a ram-air-spoiler roll-control device on a forward-control missile at supersonic speeds

    Get PDF
    A parametric experimental wind-tunnel investigation was made at supersonic Mach numbers to provide design data on a ram-air-spoiler roll-control device that is to be used on forward-control cruciform missile configurations. The results indicate that the ram-air-spoiler tail fin is an effective roll-control device and that roll control is generally constant with vehicle attitude and Mach number unless direct canard and/or forebody shock impingement occurs. The addition of the ram-air-spoiler tail fins resulted in only small changes in aerodynamic-center location. For the ram-air-spoiler configuration tested, there are large axial force coefficient effects associated with the increased fin thickness and ram-air momentum loss

    Wind-tunnel investigation at supersonic speeds of a remote-controlled canard missile with a free-rolling-tail brake torque system

    Get PDF
    Wind tunnel tests were conducted at Mach numbers 1.70, 2.16, and 2.86 to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed or free rolling tailfin afterbodies. Mechanical coupling effects of the free-rolling-tail afterbody were investigated by using an electronic electromagnetic brake system providing arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail roll rate. Remote-controlled canards were deflected to provide pitch, yaw, and roll control. Results indicate that the induced rolling moment coefficients due to canard yaw control are reduced and linearized for the free-rolling-tail (free-tail) configuration. The canards of the latter provide conventional roll control for the entire angle-of-attack test range. For the free-tail configuration, the induced rolling moment coefficient due to canard yaw control increased and the canard roll control decreased with increases in brake torque, which simulated bearing friction torque. It appears that a compromise in regard to bearing friction, for example, low-cost bearings with some friction, may allow satisfactory free-tail aerodynamic characteristics that include reductions in adverse rolling-moment coefficients and lower tail roll rates

    Stability and control characteristics of a monoplannar missile configuration with two low-profile tail arrangements at Mach numbers from 1.70 to 2.86

    Get PDF
    An experimental wind tunnel investigation has been made to determine the longitudinal and lateral aerodynamic stability and control characteristics of two tail fin arrangements of a monowing missile model. Both a conventional cruciform and a low profile tail arrangement were tested. The results indicate that the tail surfaces of both configurations were effective in producing pitch control. It was also concluded that both are effective in producing roll and yaw control that is accompanied by proverse yaw and roll, respectively. The conventional cruciform tail produces the most roll and yaw control

    Wind-tunnel investigation at Mach numbers from 1.90 to 2.86 of a canard-controlled missile with ram-air-jet spoiler roll control

    Get PDF
    The efficacy of using a ram-air-jet spoiler roll control device on a typical canard-controlled missile configuration was investigated. For roll control comparisons, conventional aileron controls on the tail fins were also tested. The results indicate that the roll control of the ram-air-jet spoiler tail fins at the highest free-stream Mach number compared favorably with that of the conventional 11-70 area-ratio tail fin ailerons, each deflected 10 deg. The roll control of the tail fin ailerons decreased while that of the ram-air-jet spoiler increased with free-stream Mach number. The addition of the ram-air-jet spoiler tail fins or flow-through tip chord nacelles on the tail fins resulted in only small changes in basic missile longitudinal stability. The axial force coefficient of the operating ram-air-jet spoiler is significantly larger than that of conventional ailerons and results primarily from the total pressure behind a normal shock in front of the nacelle inlets

    Wind-tunnel investigation at supersonic speeds of a canard-controlled missile with fixed and free-rolling tail fins

    Get PDF
    A wind tunnel investigation was made at free stream Mach numbers from 1.70 to 2.86 to determine the effects of fixed and free rolling tail fin afterbodies on the static longitudinal and lateral aerodynamic characteristics of a cruciform canard controlled missile model. The effect of small canard roll and yaw control deflections was also examined. The results indicate that the fixed and free rolling tail configurations have about the same lift curve slope and longitudinal stability level at low angles of attack. For the free rolling tail configuration, the canards provide conventional roll control with no roll control reversal at low angles of attack. The free rolling tail configuration reduced induced roll due to model roll angle and canard yaw control

    Effect of tail-fin span on stability and control characteristics of a Canard-controlled missile at supersonic Mach numbers

    Get PDF
    An experimental wind-tunnel investigation was conducted at Mach numbers from 1.60 to 3.50 to obtain the longitudinal and lateral-directional aerodynamic characteristics of a circular, cruciform, canard-controlled missile with variations in tail-fin span. In addition, comparisons were made with the experimental aerodynamic characteristics using three missile aeroprediction programs: MISSILE1, MISSILE2, and NSWCDM. The results of the investigation indicate that for the test Mach number range, canard roll control at low angles of attack is feasible on tail-fin configurations with tail-to-canard span ratios of less than or equal to 0.75. The conards are effective pitch and yaw control devices on each tail-fin span configuration tested. Programs MISSILE1 and MISSILE2 provide very good predictions of longitudinal aerodynamic characteristics and fair predictions of lateral-directional aerodynamic characteristics at low angles of attack, with MISSILE2 predictions generally in better agreement with test data. Program NSWCDM provides good longitudinal and lateral-directional aerodynamic predictions that improve with increases in tail-tin span

    Evaluation of a technique to generate artificially thickened boundary layers in supersonic and hypersonic flows

    Get PDF
    The feasibility of using a contoured honeycomb model to generate a thick boundary layer in high-speed, compressible flow was investigated. The contour of the honeycomb was tailored to selectively remove momentum in a minimum of streamwise distance to create an artificially thickened turbulent boundary layer. Three wind tunnel experiments were conducted to verify the concept. Results indicate that this technique is a viable concept, especially for high-speed inlet testing applications. In addition, the compactness of the honeycomb boundary layer simulator allows relatively easy integration into existing wind tunnel model hardware

    Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    Get PDF
    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails
    corecore