15,253 research outputs found

    Inorganic thermal control pigment Patent

    Get PDF
    White paint production by heating impure aluminum silicate clay having low solar absorptanc

    How can we test seesaw experimentally?

    Get PDF
    The seesaw mechanism for the small neutrino mass has been a popular paradigm, yet it has been believed that there is no way to test it experimentally. We present a conceivable outcome from future experiments that would convince us of the seesaw mechanism. It would involve a variety of data from LHC, ILC, cosmology, underground, and low-energy flavor violation experiments to establish the case.Comment: 5 pages, 4 figure

    Search for bursts in air shower data

    Get PDF
    There have been reports in recent years of the possible observation of bursts in air shower data. If such events are truly of an astrophysical nature then, they represent an important new class of phemonenon since no other bursts have been observed above the MeV level. The spectra of conventional gamma ray bursts are unknown at higher energies but their observed spectra at MeV energies appear generally to exhibit a steepening in the higher MeV range and are thus unlikely to extrapolate to measurable fluxes at air shower energies. An attempt has been made to look for deviations from randomness in the arrival times of air showers above approx. 10 to the 14th power eV with a number of systems and results so far are presented here. This work will be continued for a substantial period of ime with a system capable of recording bursts with multiple events down to a spacing of 4 microns. Earlier data have also been searched for the possible association of air shower events with a glitch of the Vela pulsar

    Far Ultraviolet Spectroscopic Explorer Observations of a Supernova Remnant in the Line of Sight to HD 5980 in the Small Magellanic Cloud

    Get PDF
    We report a detection of far ultraviolet absorption from the supernova remnant SNR 0057 - 7226 in the Small Magellanic Cloud (SMC). The absorption is seen in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of the LBV/WR star HD 5980. Absorption from O VI 1032 and C III 977 is seen at a velocity of +300 km/s with respect to the Galactic absorption lines, +170 km/s with respect to the SMC absorption. The O VI 1038 line is contaminated by H_2 absorption, but is present. These lines are not seen in the FUSE spectrum of Sk80, only ~1' (~17 pc) away from HD 5980. No blue-shifted O VI 1032 absorption from the SNR is seen in the FUSE spectrum. The O VI 1032 line in the SNR is well described by a Gaussian with FWHM=75 km/s. We find log N(O VI)=14.33-14.43, which is roughly 50% of the rest of the O VI column in the SMC (excluding the SNR) and greater than the O VI column in the Milky Way halo along this sight line. The N(C IV)/N(O VI) ratio for the SNR absorption is in the range of 0.12-0.17, similar to the value seen in the Milky Way disk, and lower than the halo value, supporting models in which SNRs produce the highly ionized gas close to the plane of the Galaxy, while other mechanisms occur in the halo. The N(C IV)/N(O VI) ratio is also lower than the SMC ratio along this sight line, suggesting that other mechanisms contribute to the creation of the global hot ionized medium in the SMC. The O VI, C IV, and Si IV apparent column density profiles suggest the presence of a multi-phase shell followed by a region of higher temperature gas.Comment: 7 pages, 3 figures, 2 tables, uses emulateapj5.sty. Accepted for publication in ApJ Letter

    SUSY-Breaking Parameters from RG Invariants at the LHC

    Full text link
    We study Renormalization Group invariant (RGI) quantities in the Minimal Supersymmetric Standard Model and show that they are a powerful and simple instrument for testing high scale models of supersymmetry (SUSY)-breaking. For illustration, we analyze the frameworks of minimal and general gauge mediated (MGM and GGM) SUSY-breaking, with additional arbitrary soft Higgs mass parameters at the messenger scale. We show that if a gaugino and two first generation sfermion soft masses are determined at the LHC, the RGIs lead to MGM sum rules that yield accurate predictions for the other gaugino and first generation soft masses. RGIs can also be used to reconstruct the fundamental MGM parameters (including the messenger scale), calculate the hypercharge D-term, and find relationships among the third generation and Higgs soft masses. We then study the extent to which measurements of the full first generation spectrum at the LHC may distinguish different SUSY-breaking scenarios. In the case of MGM, although most deviations violate the sum rules by more than estimated experimental errors, we find a 1-parameter family of GGM models that satisfy the constraints and produce the same first generation spectrum. The GGM-MGM degeneracy is lifted by differences in the third generation masses and the messenger scales.Comment: (v1) 30 pages; (v2) mislabeling in figs 2 and 3 corrected, version accepted for publication in Phys. Rev.
    corecore