2,747 research outputs found

    Abundances and Kinematics of Field Halo and Disk Stars I: Observational Data and Abundance Analysis

    Full text link
    We describe observations and abundance analysis of a high-resolution, high-S/N survey of 168 stars, most of which are metal-poor dwarfs. We follow a self-consistent LTE analysis technique to determine the stellar parameters and abundances, and estimate the effects of random and systematic uncertainties on the resulting abundances. Element-to-iron ratios are derived for key alpha, odd, Fe-peak, r- and s-process elements. Effects of Non-LTE on the analysis of Fe I lines are shown to be very small on the average. Spectroscopically determined surface gravities are derived that are generally close to those obtained from Hipparcos parallaxes.Comment: 41 pages, 7 Postscript figures. Accepted for publication in the A

    Elemental Abundance Ratios in Stars of the Outer Galactic Disk. II. Field Red Giants

    Get PDF
    We summarize a selection process to identify red giants in the direction of the southern warp of the Galactic disk, employing VI_C photometry and multi-object spectroscopy. We also present results from follow-up high-resolution, high-S/N echelle spectroscopy of three field red giants, finding [Fe/H] values of about -0.5. The field stars, with Galactocentric distances estimated at 10 to 15 kpc, support the conclusion of Yong, Carney, & de Almeida (2005) that the Galactic metallicity gradient disappears beyond R_GC values of 10 to 12 kpc for the older stars and clusters of the outer disk. The field and cluster stars at such large distances show very similar abundance patterns, and, in particular, all show enhancements of the "alpha" elements O, Mg, Si, Ca, and Ti and the r-process element Eu. These results suggest that Type II supernovae have been significant contributors to star formation in the outer disk relative to Type Ia supernovae within the past few Gyrs. We also compare our results with those available for much younger objects. The limited results for the H II regions and B stars in the outer disk also suggest that the radial metallicity gradient in the outer disk is shallow or absent. The much more extensive results for Cepheids confirm these trends, and that the change in slope of the metallicity gradient may occur at a larger Galactocentric distance than for the older stars and clusters. However, the younger stars also show rising alpha element enhancements with increasing R_GC, at least beyond 12 kpc. These trends are consistent with the idea of a progressive growth in the size of the Galactic disk with time, and episodic enrichment by Type II supernovae as part of the disk's growth. [Abridged]Comment: Accepted for publication in A

    Writing the Live Coding Book

    Get PDF
    This paper is a speculation on the relationship between coding and writing, and the ways in which technical innovations and capabilities enable us to rethink each in terms of the other. As a case study, we draw on recent experiences of preparing a book on live coding, which integrates a wide range of personal, historical, technical and critical perspectives. This book project has been both experimental and reflective, in a manner that allows us to draw on critical understanding of both code and writing, and point to the potential for new practices in the future

    Oxygen Abundances in Two Metal-Poor Subgiants from the Analysis of the 6300 A Forbidden O I Line

    Full text link
    Recent LTE analyses (Israelian et al. 1998 and Bosegaard et al. 1999) of the OH bands in the optical-ultraviolet spectra of nearby metal-poor subdwarfs indicate that oxygen abundances are generally higher than those previously determined. The difference increases with decreasing metallicity and reaches delta([O/Fe]) ~ +0.6 dex as [Fe/H] approaches -3.0. Employing high resolution (R = 50000), high S/N (~ 250) echelle spectra of the two stars found by Israelian et al. (1998) to have the highest [O/Fe]-ratios, viz, BD +23 3130 and BD +37 1458, we conducted abundance analyses based on about 60 Fe I and 7-9 Fe II lines. We determined from Kurucz LTE models the values of the stellar parameters, as well as abundances of Na, Ni, and the traditional alpha-elements, independent of the calibration of color vs TeffT_{eff} scales. We determined oxygen abundances from spectral synthesis of the stronger line (6300 A) of the [O I] doublet. The syntheses of the [O I] line lead to smaller values of [O/Fe], consistent with those found earlier among halo field and globular cluster giants. We obtain [O/Fe] = +0.35 +/- 0.2 for BD +23 3130 and +0.50 +/- 0.2 for BD +37 1458. In the former, the [O I] line is very weak (~ 1 mA), so that the quoted [O/Fe] value may in reality be an upper limit. Therefore in these two stars a discrepancy exists between the [O/Fe]- ratios derived from [O I] and the OH feature, and the origin of this difference remains unclear. Until the matter is clarified, we suggest it is premature to conclude that the ab initio oxygen abundances of old, metal-poor stars need to be revised drastically upward.Comment: 38 pages, 5 tables, 14 figures To appear in July 1999 AJ Updated April 16, 1999. Fixed typo

    Chemical Abundances Of Three Metal-Poor Globular Clusters (NGC 6287, NGC 6293, And NGC 6541) In The Inner Halo

    Get PDF
    We present a chemical abundance study of three inner old halo clusters NGC 6287, NGC 6293, and NGC 6541, finding [Fe/H] = -2.01 +/- 0.05, -1.99 +/- 0.02, and -1.76 +/- 0.02, respectively, and our metallicity measurements are in good agreement with previous estimates. The mean alpha-element abundances of our program clusters are in good agreement with other globular clusters, confirming previous results. However, the individual alpha-elements appear to follow different trends. The silicon abundances of the inner halo clusters appear to be enhanced and the titanium abundances appear to be depleted compared to the intermediate halo clusters. Our results also appear to oppose to those of metal-rich bulge giants studied by McWilliam and Rich, who found that bulge giants are titanium enhanced and silicon deficient. In particular, [Si/Ti] ratios appear to be related to Galactocentric distances,in the sense that [Si/Ti] ratios decrease with Galactocentric distance. We propose that contributions from different masses of the SNe II progenitors that enriched proto-globular cluster clouds' elemental abundances and the different initial physical environments surrounding the proto-globular clusters clouds are responsible for this gradient in [Si/Ti] ratios versus Galactocentric distances of the "old halo" globular clusters. On the other hand, our program clusters' enhanced s-process elemental abundances suggest that the formation timescale of our program clusters might be as short as a few times 10^8 yr after the star formation is initiated in the Galaxy's central regions, if the s-process site is intermediate mass AGB stars.Comment: Accepted for publication in AJ (Sept. 2002

    Improved Laboratory Transition Probabilities for Neutral Chromium and Re-determination of the Chromium Abundance for the Sun and Three Stars

    Full text link
    Branching fraction measurements from Fourier transform spectra in conjunction with published radiative lifetimes are used to determine transition probabilities for 263 lines of neutral chromium. These laboratory values are employed to derive a new photospheric abundance for the Sun: log ϵ\epsilon(Cr I)_{\odot} = 5.64±\pm0.01 (σ=0.07\sigma = 0.07). These Cr I solar abundances do not exhibit any trends with line strength nor with excitation energy and there were no obvious indications of departures from LTE. In addition, oscillator strengths for singly-ionized chromium recently reported by the FERRUM Project are used to determine: log ϵ\epsilon(Cr II)_{\odot} = 5.77±\pm0.03 (σ=0.13\sigma = 0.13). Transition probability data are also applied to the spectra of three stars: HD 75732 (metal-rich dwarf), HD 140283 (metal-poor subgiant), and CS 22892-052 (metal-poor giant). In all of the selected stars, Cr I is found to be underabundant with respect to Cr II. The possible causes for this abundance discrepancy and apparent ionization imbalance are discussed.Comment: 44 pages, 6 figure

    A Study of the B-V Colour Temperature Relation

    Full text link
    We attempt to construct a B-V colour temperature relation for stars in the least model dependent way employing the best modern data. The fit we obtained with the form Teff = Teff((B-V)0,[Fe/H],log g) is well constrained and a number of tests show the consistency of the procedures for the fit. Our relation covers from F0 to K5 stars with metallicity [Fe/H] = -1.5 to +0.3 for both dwarfs and giants. The residual of the fit is 66 K, which is consistent with what are expected from the quality of the present data. Metallicity and surface gravity effects are well separated from the colour dependence. Dwarfs and giants match well in a single family of fit, differing only in log g. The fit also detects the Galactic extinction correction for nearby stars with the amount E(B-V) = 0.26 +/-0.03 mag/kpc. Taking the newly obtained relation as a reference we examine a number of B-V colour temperature relations and atmosphere models available in the literature. We show the presence of a systematic error in the colour temperature relation from synthetic calculations of model atmospheres; the systematic error across K0 to K5 dwarfs is 0.04-0.05 mag in B-V, which means 0.25-0.3 mag in Mv for the K star range. We also argue for the error in the temperature scale used in currently popular stellar population synthesis models; synthetic colours from these models are somewhat too blue for aged elliptical galaxies. We derive the colour index of the sun (B-V)sun = 0.627 +/-0.018, and discuss that redder colours (e.g., 0.66-0.67) often quoted in the literature are incompatible with the colour-temperature relation.Comment: AASLaTeX (aaspp4.sty),36 pages (13 figures included), submitted to Astronomical Journal, replaced (typo in author name

    Ideal MHD theory of low-frequency Alfven waves in the H-1 Heliac

    Full text link
    A part analytical, part numerical ideal MHD analysis of low-frequency Alfven wave physics in the H-1 stellarator is given. The three-dimensional, compressible ideal spectrum for H-1 is presented and it is found that despite the low beta (approx. 10^-4) of H-1 plasmas, significant Alfven-acoustic interactions occur at low frequencies. Several quasi-discrete modes are found with the three-dimensional linearised ideal MHD eigenmode solver CAS3D, including beta-induced Alfven eigenmode (BAE)- type modes in beta-induced gaps. The strongly shaped, low-aspect ratio magnetic geometry of H-1 causes CAS3D convergence difficulties requiring the inclusion of many Fourier harmonics for the parallel component of the fluid displacement eigenvector even for shear wave motions. The highest beta-induced gap reproduces large parts of the observed configurational frequency dependencies in the presence of hollow temperature profiles

    Rubidium and lead abundances in giant stars of the globular clusters M4 and M5

    Get PDF
    We present measurements of the neutron-capture elements Rb and Pb for bright giants in the globular clusters M4 and M5. The clusters are of similar metallicity ([Fe/H] = -1.2) but M4 is decidedly s-process enriched relative to M5: [Ba/Fe] = +0.6 for M4 but 0.0 for M5. The Rb and Pb abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained with MIKE on the Magellan telescope. Abundances of Y, Zr, La, and Eu were also obtained. In M4, the mean abundances from 12 giants are [Rb/Fe] = 0.39 +/- 0.02 (sigma = 0.07), [Rb/Zr] = 0.17 +/- 0.03 (sigma = 0.08), and [Pb/Fe] = 0.30 +/- 0.02 (sigma = 0.07). In M5, the mean abundances from two giants are [Rb/Fe] = 0.00 +/- 0.05 (sigma = 0.06), [Rb/Zr] = 0.08 +/- 0.08 (sigma = 0.11), and [Pb/Fe] = -0.35 +/- 0.02 (sigma = 0.04). Within the measurement uncertainties, the abundance ratios [Rb/Fe], [Pb/Fe] and [Rb/X] for X = Y, Zr, La are constant from star-to-star in each cluster and none of these ratios are correlated with O or Na abundances. While M4 has a higher Rb abundance than M5, the ratios [Rb/X] are similar in both clusters indicating that the nature of the s-products are very similar for each cluster but the gas from which M4's stars formed had a higher concentration of these products.Comment: Accepted for publication in Ap

    SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP

    Get PDF
    The Southern Hemisphere SHCal04 radiocarbon calibration curve has been updated with the addition of new data sets extending measurements to 2145 cal BP and including the ANSTO Younger Dryas Huon pine data set. Outside the range of measured data, the curve is based upon the Northern Hemisphere data sets as presented in IntCal13, with an interhemispheric offset averaging 43 ± 23 yr modeled by an autoregressive process to represent the short-term correlations in the offset
    corecore